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Abstract: This paper reports on the analysis of a 2.5 year-long time series of ASAR wide 

swath mode (WSM) observations for characterizing the soil moisture dynamics. The 

employed ASAR WSM data set consists of 152 VV-polarized scenes acquired in the period 

between April 2005 and September 2007 over the Naqu river basin located on the Tibetan 

Plateau. For four different spatial domains, with areas of 30x30 km2, 5x5 km2 and (two 

domains of) 1x1 km2, the mean backscatter (σo) and the standard deviation (stdev) have 

been computed for each ASAR acquisition. Comparison of the mean σo
 values with the 

stdev values results in a specific triangular distribution of data points for all spatial 

domains. Analysis of the mean σo and stdev with respect to in-situ soil moisture 

measurements demonstrates that this triangular shaped distribution can be explained by soil 

moisture dynamics during monsoon and winter periods. This shows that the relationship 

between the spatial mean soil moisture and variability is not uniquely defined and may 

change throughout seasons. Downscaling of coarse resolution soil moisture products 

should, therefore, be ideally based on additional near real time data sources. In this context, 

the presented results could form a basis for the development of SAR-based soil moisture 

downscaling methodologies. 
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1. Introduction  
 

The importance of regional-scale spatial and temporal soil moisture dynamics in the development of 

weather systems has been acknowledged [1-3]. Satellite missions that accommodate the monitoring of 

this land surface property are currently operational (e.g. Advanced Microwave Scanning Radiometer 

(AMSR), Advanced Scatterometer (ASCAT), being prepared for launch (e.g. Soil Moisture and Ocean 

Salinity (SMOS)) and are being formulated (e.g. Soil Moisture Active/Passive (SMAP). Monitoring of 

the temporal evolutions will be accommodated, but the variability within the radiometer and 

scatterometer footprints remains difficult to obtain.  

Previous investigations [4-6] have focused on describing large-scale soil moisture distributions 

through statistical spatial analysis of comprehensive in-situ data sets. The diversity in results from 

those field campaigns indicates that the relationship between statistical moments characterizing the 

temporal evolution and the spatial variability is not uniquely defined across landscapes and throughout 

time. For example, Famiglietti et al. [7] observed that the mean soil moisture and its variability are 

negatively correlated, while other investigations [8, 9] have reported on positive correlations. More 

recently, Ryu and Famiglietti [10] concluded that the relationship between the mean soil moisture and 

its variability depends on the modality of soil moisture probability density functions (PDFs).  

Therefore, determination of the soil moisture distributions within large-scale passive microwave 

satellite footprints would, ideally, be obtained from additional data sources. High resolution active 

microwave observations acquired from space through the Synthetic Aperture Radar (SAR) technique 

have been shown to be sensitive to soil moisture changes [11-13] and could be a good candidate. 

Although many scientists [14-18] have shown that SAR observations can be utilized to retrieve soil 

moisture under controlled conditions, the development of operational retrieval methodologies has been 

less successful for various reasons.  

At the spatial scale of SAR observations, variations in surface roughness and vegetation affecting 

the backscatter (σo) are large. Representative parameterizations required to eliminate surface roughness 

and vegetation effects are difficult to define and imposes large uncertainties on retrievals. Moreover, 

the temporal resolution of SAR observations is relatively low because of either limitations of the SAR 

sensors itself (i.e. European Remote Sensing (ERS) satellite -1/2) or conflicts with other users in case 

of multi mode SAR sensors (e.g. Advanced SAR (ASAR), Phased Array type L-band SAR 

(PALSAR)). Long-term SAR data sets with the temporal resolution required to capture the dynamics of 

highly variable land surface states (such as soil moisture conditions) are, therefore, difficult to obtain. 

Through consistent data requests in the ESA - MOST (European Space Agency – Ministry of 

Science and technology, China) – Dragon programme, a 2.5 years long time series of SAR 

observations has been obtained from ASAR in the wide swath mode (WSM) over the Naqu river basin 

located on the central part of Tibetan Plateau. This data set includes 152 scenes acquired in the period 

between April 2005 and September 2007 with an averaged temporal resolution of 6 days. In this paper, 

this time series is analyzed to study the influence of soil moisture dynamics throughout the selected 

period on σo signatures and their effect on the spatial σ
o variability over different spatial domains. 

Through this analysis the potential of SAR observations to provide information on the soil moisture 

conditions over aggregated spatial domains is demonstrated, which may form a basis for the 
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development of SAR based methodologies to characterize the spatial variability within coarse 

resolution microwave radiometer and scatterometer footprints.  

 
2. ASAR WSM data sets 

 

The ASAR WSM observations have been requested in the VV-polarization covering a 15-45 

degrees view angle range and delivered as ellipsoid geocoded level 1b products with a grid spacing of 

75 meters. The data set includes 102 scenes in an ascending orbit and 50 scenes in a descending orbit 

in the period between April 2005 and September 2007 with 6-day temporal resolution on average. Prior 

to derivation of the σo observations, the ascending and descending scenes have been separately co-

located and the terrain elevation angle has been determined for the ascending and descending view 

geometries based on the 90 meter resolution Digital Elevation Model (DEM) by the Shuttle Radar 

Topography Mission (SRTM). Radiometrically terrain corrected σo observations have been derived 

following ASAR product handbook (available at: http://envisat.esa.int/handbooks/asar, verified on 

August 18, 2008) using the terrain correction incidence angle. Because the requested WSM product has 

been processed to 21-look images (3 looks in the azimuth and 7 looks in the range direction), no 

additional speckle filtering has been applied. 

The obtained σo observations have been normalized to an incidence angle of 23 degrees using: 

( ) 2
23

cos
i

o
o

i

θσ
σ

θ
=             (1) 

where 
i

o
θσ is the ASAR σo observation ( )23oσ  is the backscatter normalized to an incidence angle of 23 

degrees and θi is the incidence angle. 

 This approach is based on Lambert’s law for optics, which assumes that the relationship between 

the incidence angle and amount of scattering per unit surface area follows the cosine law. This 

behavior is typically observed over the middle range of incidence angles [22], in which ASAR WSM 

observations have been acquired.  

 
3. Description of the study area  

 

In the Naqu river basin a meso-scale network of meteorological stations has been installed in the 

framework of the GEWEX* sponsored GAME** /Tibet and CAMP*** /Tibet field campaigns, of which 

Naqu station is equipped with the most extensive set of field instruments (e.g. radiation and eddy 

correlation instrumentation). This station is located near Naqu city at a latitude and longitude of 31.36 

and 91.89 degrees (WSG84), respectively. The Naqu station and its vicinity have been selected as the 

focal point for this study.  

For this investigation the top 4-cm soil moisture measured at Naqu station are used. These soil 

moisture measurements have been recorded using a 10-cm long impedance probe (type: ECH2O EC-

10) manufactured by Decagon Devices. The probe readings have been calibrated using volumetric soil 

moisture measurements obtained through gravimetric sampling. After calibration the Root Mean 

Square Difference (RMSD) between calibrated impedance probe and gravimetrically determined soil 

moisture is found to be 0.024 [cm3cm-3]. 
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In spite of the overall high altitude, on average 4,500 meters above sea level, the terrain is relatively 

smooth with rolling hills varying tens of meters in elevation. The top soils have a high saturated 

hydraulic conductivity (Ksat = 1.2 m d-1) positioned on top of an impermeable rock formation. 

Precipitation is, therefore, not able to drain deeply into the ground and will runoff towards the lower 

parts in the landscape. In these local depressions, wetland vegetation is the dominant land cover. The 

higher parts are covered by sparse vegetation, which consist of grasses and mosses. Soils in the 

wetlands have high organic matter content and can be classified as peat, while in the grasslands soils 

are sandy. Figure 1 shows the geographical location of Naqu river basin and gives an impression of the 

Naqu station and a typical grassland and wetland in the study area.  

 
Figure 1. Geographical location of Naqu river basin and photos of Naqu station and a 

typical grassland and wetland in the study area. 

*
 GEWEX ~ Global Energy and Water cycle Experiment  

** GAME ~ GEWEX Asian Monsoon Experiment 
***  CAMP ~ Coordinated enhanced observing period (CEOP) Asia–Australia monsoon project 

 

The weather in this part of the plateau is influenced by the warm monsoon in the summer and cold 

dry winters with temperatures below freezing point. During the winter, the soil surfaces of the 

grasslands as well as wetlands contain small amounts of moisture and are often frozen. During the 

summer months, surface conditions in the wetlands are predominantly wet due to accumulation of 

runoff, while soil moisture dynamics over the grassland are highly variable due to processes, such as 

precipitation, evaporation and transpiration.  
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4. Observed relationships between the mean backscatter and its spatial variability over different 
domains  

 

Differences in the land cover and seasonal weather cause soil moisture conditions to be spatially and 

temporally variable in the area around Naqu station. To investigate the impact of these soil moisture 

dynamics on σo signatures and its spatial variability, four different study domains have been selected, 

which have areas of: 30x30 km2, 5x5 km2 and 1x1 km2. The 30x30 km2 and 5x5 km2 domains are 

covered by a mixture of grassland and wetland, while for the 1x1 km2 domain a grassland and wetland 

have been selected. The areas have been selected in such way that the 5x5 km2 domain is included in 

30x30 km2 domain, and the 1x1 km2 domains are included in the 5x5 km2 domain as is shown in 

Figure 2.  

Figure 2. Positioning of the selected 30x30 km2, 5x5 km2 and 1x1 km2 wetland and 

grassland domains with the study area and the location of Naqu station. 

 

 

Backscatter [dB]

30x30 km2

5x5 km2

grasslandwetland

Naqu station

Naqu city
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Over each of the four domains σo observations have been averaged and the standard deviation 

(stdev) has been determined for all images within the ASAR WSM time series. The stdev is used, here, 

as a statistical variable representing the spatial σ
o variability. In Figure 3, the mean σo is plotted against 

the σo stdev for the four domains. The distribution of data points for each of the four spatial domains in 

figure 3 has a triangular shape. The explanation for this shape can be given as follows and has been 

schematized in Figure 4. 

The lowest mean σo and σo stdev represent dry and frozen conditions. Because drought and freezing 

conditions have an impact on large areas, the spatial σo variability is small and is primarily influenced 

by speckle and spatial variations in surface roughness. Comparison of the minimum stdev’s obtained 

from the different domains shows that the spatial σ
o variability increases with the size of the domain. 

This might be expected because over larger areas the variety of roughness conditions may be higher.  
 

Figure 3. Standard deviation in σo observations plotted against the mean σ
o extracted 

from the ASAR WSM time series and four different spatial domains around Naqu station.  

 

The mean σo value increases under conditions where liquid soil moisture is present. When 

thaw/freeze cycles and precipitation are homogeneously distributed throughout the study domains, the 

σ
o variability remains relatively low. The σo variability increases due to spatial differences in soil 

thermal and hydraulic properties, and precipitation inputs.  
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For each of the four domains, a well-defined and linear relationship exists between the mean σ
o and 

maximum stdev at specific σo levels and its slope could be seen as measure for the surface 

heterogeneity of a specific domain. Steeper slopes indicate a larger surface heterogeneity. For the 5x5 

km2 domain, the slope is steepest and its surface heterogeneity may be considered to be the largest of 

the four domains. This is, however, also influenced by the distribution of wetlands and grasslands in 

the selected areas, because differences in land surface conditions between wetlands and grasslands 

persist, specifically during the monsoon. The similarity between the slopes in plots of the 30x30 km2, 

and 1x1 km2 wetland and grassland domains is striking and suggests a similarity in the surface 

heterogeneity between these areas. Additionally, it should be noticed that for the grassland domain the 

number of data points with a high stdev is small. Soils in the grasslands are sandy and have a high 

hydraulic conductivity. Over short time periods, soil moisture is transported from the top to deeper soil 

layers. Spatial variations due to dry-down cycle diminish, therefore, quickly and are difficult to capture 

by observations acquired at a 6-day temporal resolution.  

 
Figure 4. Schematization of the relationship between the mean σo and the standard 

deviation, and its coherence with specific land surface conditions and land surface 

characteristics (e.g. soil texture and heterogeneity).  

 

During monsoon periods, land surfaces are wetter and vegetation grows, which both lead to an 

increase in the average σo values. Simultaneous to these higher σ
o observations, its spatial variability 
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near saturation. Secondly, vegetation attenuates the soil surface scattering contribution and reduces the 

σ
o sensitivity to soil moisture changes. Thirdly, the σo response is less sensitive to soil moisture 

changes under wet than under dry conditions [23]. The decrease of the σo sensitivity to soil moisture 

changes due to either vegetation or soil wetness reduces the impact of spatial soil moisture variations 

on the σo variability.  

Further, the plots show that the σo variability is higher under saturated than under dry conditions, 

which is caused by a combination of spatial variations in the porosity and vegetation. The increase in 

the spatial variability is stronger for larger domains (30x30 km2 and 5x5 km2) than the 1x1 km2 

domains, which is expected because the variability in the porosity and vegetation tend to increase over 

larger distances.  

The relationship between the mean σ
o and maximum stdev at specific σo levels under wet conditions 

is non-linear and is influenced by spatial variations in the soil hydraulic behavior and vegetation. 

Binding forces between the water molecules and soil particles determining the capillary force are, in 

general, smaller under wet than under dry conditions. A large amount of moisture is, therefore, 

transported relatively fast to deeper soil layers initiating the dry-down cycle. The time scale over which 

this process occurs depends strongly on the water retention capacity and hydraulic conductivity of the 

soil, which are both spatially variable. In addition, vegetation covering the soil surface reduces the σo 

sensitivity to soil moisture and destroys the spatial variability induced by the soil hydraulic behavior.  

 
5. Comparison of spatial backscatter statistics with in-situ soil moisture measurements 

 

In the previous section, the impact of land surface processes on the relationship between the mean σ
o 

and the stdev is described. Within this discussion the magnitude of the mean σo is implicitly assumed 

to be representative for the local soil moisture conditions and the σo stdev is utilized as indication for 

the spatial soil moisture variability. A robust validation of these assumptions would require intensive 

soil moisture sampling across the spatial domains over a long time period. Unfortunately, such data set 

is not available for the selected study area. However, at Naqu station an almost continuous time series 

of soil moisture measurements has been collected during the period in which ASAR observations were 

collected. These soil moisture measurements are plotted against the mean σo and stdev for the four 

spatial domains, which is shown in Figure 5. Linear regressions functions of the form 
o a soil moisture bσ = ⋅ +  have been computed and are presented in the plots. Statistics related to these 

regression functions are given in Table I.  

It should be acknowledged for the comparison of mean σo and stdev with the measured soil moisture 

the SAR observations have not been corrected for the effects of surface roughness and vegetation. The 

objective of this investigation is, however, not to present (or apply) a methodology to correct the σ
o 

observations for the surface roughness and vegetation effects, but to analyze the relationship between 

the spatial backscatter statistics and in-situ soil moisture measurements. For the description (and 

application) of methodologies that correct σ
o observations for the effects of surface roughness and 

vegetation the reader is referred to previous investigations [i.e. 14-21]. 
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Figure 5. Comparison of the mean σo and stdev with soil moisture measured at Naqu 

station for the four selected spatial domain. The lines in the plots with the mean σo values 

represent linear regression functions of the form σ = ⋅ +o a sm b , where sm is the soil 

moisture content [cm3cm-3]. 
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Table 1. Statistics related to linear regression functions computed between mean 

backscatter and soil moisture for the four spatial domains. 

 

 

 

 

 

 

 

Despite the mean σo is compared to soil moisture measured only at a single location and no 

correction for the effects of vegetation has been applied, still positive relationships are observed for all 

domains. Somewhat surprising is that for the 30x30 km2 and 5x5 km2 domains the coefficient of 

determination (R2) between the mean σo and soil moisture is higher than for the 1x1 km2 wetland and 

grassland domains. Because the size of the domains is smaller, the spatial soil moisture variability is 

smaller for the 1x1 km2 domains. Therefore, it would be expected that uncertainties due to imperfect 

representation spatial soil moisture variability are lower for the 1x1 km2 than for the 30x30 km2 and 

5x5 km2 domains, which should result in better defined relationships between the mean σo and the 

measured soil moisture. Apparently, soil moisture dynamics measured at Naqu station is a better 

representation of the temporal soil moisture evolution observed over the larger 30x30 km2 and 5x5 km2 

domains.  

As is shown in Figure 2, Naqu station is located at the edge of a wetland. Therefore, soil moisture 

measured at this location will attain under dry conditions levels representative for grasslands, while 

under wet conditions soil moisture values will be higher due to the influence of the nearby wetland. 

These expected dynamics of the soil moisture measured at Naqu station can also be deduced from the 

distribution of the data points in Figure 5. For example, over 1x1 km2 grassland domain low mean σo 

values are observed even when the measured soil moisture is near saturation. Furthermore, the overall 

σ
o response observed over the 1x1 km2 grassland domain to the measured soil moisture is lower than 

for the other domains, while for the 1x1 km2 wetland domain the σo sensitivity to soil moisture is 

higher. This suggests that measured soil moisture at Naqu station is systematically higher than actual 

soil moisture in 1x1 km2 grassland domain and systematically lower than the actual soil moisture 1x1 

km2 wetland domain. These observations supports that the soil moisture evolution measured at Naqu 

station represents better the soil moisture dynamics of the 30x30 km2 and 5x5 km2 areas, which 

explains the higher R2 for those domains.  
The comparison of the σo stdev to the measured soil moisture for the four domains results in similar 

triangular distributions of the data points as is observed in Figure 3. The general explanation for the 

specific distribution of data points has been discussed in the previous section. The similarity in the 

triangular data point distributions between Figures 3 and 5 shows that the observed relationships 

between the mean σo and stdev can be considered to be representative for the temporally varying spatial 

soil moisture distributions in the selected domains.  

However, also some differences are observed in the distribution of data points between Figures 3 

and 5. For example, the relationship between the σ
o stdev and measured soil moisture towards dry 

Domain a [dB/cm3cm-3] b [dB] R2 [-] 

30x30 km2 16.2 -15.9 0.49 

5x5 km2 19.0 -15.7 0.50 

1x1 km2 wetland 19.2 -14.4 0.43 

1x1km2 grassland 16.2 -16.9 0.37 
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conditions is not as well defined as relationship between the mean σo and the stdev in Figure 3. 

Moreover, several outliers are observed in Figure 5 deviating strongly from the general pattern. 

Explanation for these differences is that the σ
o stdev is compared in Figure 5 to soil moisture measured 

only at a single location. The measured soil moisture will, therefore, not always be representative for 

the spatial mean soil moisture of a spatial domain. In some cases, the measured soil moisture 

underestimates the actual conditions in a specific domain, while in other cases it overestimates the 

actual conditions. This is most obvious in the plot of the wetland domain. At a measured soil moisture 

of 0.03 (cm3cm-3), the σo stdev varies between 1.19 and 2.07 (dB). Since wetlands are to be 

systematically wetter than Naqu station (especially under those dry conditions), it can be expected that 

the actual soil moisture condition in the wetlands are wetter for the data points with a high stdev.  

 
6. Conclusions and Discussion 

 

In this paper, the spatial mean σo and stdev of four spatial domains obtained from a time series of 

152 ASAR WSM images acquired over the Naqu river basin have been analyzed. The selected spatial 

domains have areas of 30x30, 5x5 km2 and 1x1 km2 (two domains). The 30x30 km2 and 5x5 km2 

domains are covered by a mixture of grasslands and wetlands, while for the 1x1 km2 domain a 

grassland and wetland have been selected. Comparison of the mean σo
 values with the stdev values 

results in very specific triangular data point distributions for all spatial domains. The decrease of σ
o 

stdev as the mean σo decreases is observed because dry and freezing conditions have an impact on large 

areas and are, typically, homogeneously distributed across spatial domains. During the monsoon, 

however, intensive rain showers may saturate large areas. A decrease in the σo stdev is, therefore, 

observed as the mean σo increases. This impact of the soil moisture dynamics during monsoon and 

winter periods on the σo signature and its spatial variability is consistently observed for all four selected 

spatial domains. These findings are confirmed through a comparison of the mean σ
o and stdev with in-

situ soil moisture measurements at a single station.  

A consequence of the reported results is that the relationship between mean soil moisture and the 

spatial variability is not uniquely defined over the Tibetan Plateau and varies during the monsoon and 

winter periods. In downscaling coarse resolution soil moisture products changes in the relationship 

between the mean soil moisture and spatial variability should be considered, and should ideally be 

based on additional near real time data sources. SAR observations could be utilized to provide soil 

moisture information within passive microwave and scatterometer footprints. 
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