Sensorg008, 8, 5501-5515; DOI: 10.3390/s8095501

SENS0r'S

| SSN 1424-8220
www.mdpi.org/sensors
Article

I ntegrated Design and I mplementation of Embedded Control
Systems with Scilab

LonghuaMa?, Feng Xia?3* and Zhe Peng *

! State Key Laboratory of Industrial Control Tectowy, Zhejiang University, Hangzhou 310027, P.R.
China; E-Mails: Ihnma@iipc.zju.edu.cn; pengzhelll8@igcom

2 College of Computer Science and Technology, Zhgjldniversity, Hangzhou 310027, P.R. China

® Faculty of Information Technology, Queensland émsity of Technology, Brisbane QLD 4001,
Australia

* Author to whom correspondence should be addregsedail: f.xia@ieee.org

Received: 2 June 2008; in revised form: 25 Aug0882/ Accepted: 1 September 2008 /
Published: 5 September 2008

Abstract: Embedded systems are playing an increasingly irapbrtole in control
engineering. Despite their popularity, embeddedesys are generally subject to resource
constraints and it is therefore difficult to buitmplex control systems on embedded
platforms. Traditionally, the design and impleméota of control systems are often
separated, which causes the development of embexntaecbl systems to be highly time-
consuming and costly. To address these problensspéper presents a low-cost, reusable,
reconfigurable platform that enables integratedigiesind implementation of embedded
control systems. To minimize the cost, free andnopeurce software packages such as
Linux and Scilab are used. Scilab is ported to ¢h@bedded ARM-Linux system. The
drivers for interfacing Scilab with several commuation protocols including serial,
Ethernet, and Modbus are developed. Experimentscaneucted to test the developed
embedded platform. The use of Scilab enables imghation of complex control
algorithms on embedded platforms. With the devedoplatform, it is possible to perform
all phases of the development cycle of embeddett@asystems in a unified environment,
thus facilitating the reduction of development tiarel cost.

Keywords. Embedded systems, real-time control, Scilab, Lim@velopment.

Sensors008, 8 5502

1. Introduction

With the availability of ever more powerful and elper products, the number of embedded devices
deployed in the real world has been far greatar that of the various general-purpose computers suc
as desktop PCs. The evidence includes the facofltae 9 billion processors manufactured in 2005,
less than 2% were used in PCs, Macs, and Unix wadrkss, while the remainder went into embedded
systems [1]. An embedded system is an applicaj@ciic computer system that is physically
encapsulated by the device it controls. It is galhen part of a larger system and is hidden frord e
users. There are a few different architecturesefobedded processors, such as ARM, PowerPC, x86,
MIPS, etc. Some embedded systems have no opersystgm, while many more run real-time
operating systems and complex multithreaded progravowadays embedded systems are used in
numerous application areas, for example, aerospasgument, industrial control, transportation,
military, consumer electronics, and sensor networks particular, embedded controllers that
implement control functions of various physical ggeses have become unprecedentedly popular in
computer-controlled systems [2-4]. The use of erdbddprocessors has the potential of reducing the
size and cost, increasing the reliability, and iowomg the performance of control systems.

The majority of embedded control systems in useytaare implemented on microcontrollers or
programmable logic controllers (PLC). Although noicontrollers and programmable logic controllers
provide most of the essential features to implenbasic control systems, the programming languages
for embedded control software have not evolvedrasther software technologies [4,5]. A large
number of embedded control systems are programrsieg special programming languages such as
sequential function charts (SFC), function blockgaages, or ladder diagram languages, which
generally provide poor programming structures. @ndther hand, the complexity of control software
is growing rapidly due to expanding requirements tba system functionalities. As this trend
continues, the old way of developing embedded obetftware is becoming less and less efficient.

There are quite a lot of efforts in both industrydaacademia to address the above-mentioned
problem. One example is the ARTIST2 network of deoee on embedded systems design
(http://www.artist-embedded.org). Another exam@dhe CEmMACS project (http://www.hamilton.ie/
cemacs/) that aims to devise a systematic, modaladel-based approach for designing complex
automotive control systems. From a technical pahtview, a classical solution for developing
complex embedded control software is to use thelaldé&@imulink platform that has been
commercially available for many years. For instanBacher and Balemi [6] developed a rapid
controller prototyping system based on Matlab, Simkuand the Real-Time Workshop toolbox;
Chindris and Muresan [7] presented a method farguSimulink along with code generation software
to build control applications on programmable systan-chip devices. However, these solutions are
often complicated and expensive. Automatic genamatof executable codes directly from
Matlab/Simulink models may not always be supportets also possible that the generated codes do
not perform satisfactorily on embedded platform&reif the corresponding Matlab/Simulink models
are able to achieve very good performance in sitimma on PC. Consequently, the developers often
have to spend significant time dealing with suctuagions. As computer hardware is becoming
cheaper and cheaper, embedded software dominagedetrelopment cost in most cases. In this

Sensors008, 8 5503

context, more affordable solutions that use lowscesen free, software tools rather than expensive
proprietary counterparts are preferable.

The main contributions of this paper are multifofdrst, a design methodology that features the
integration of controller design and its impleméiota is introduced for embedded control systems.
Secondly, a low-cost, reusable, reconfigurablefqiat is developed for designing and implementing
embedded control systems based on Scilab and Limhich are freely available along with source
code. Finally, a case study is conducted to testpérformance of the developed platform, with
preliminary results presented.

The platform is built on the Cirrus Logic EP9315RM9) development board running a Linux
operating system. Since Scilab was originally desigfor general-purpose computers such as PCs, we
port Scilab to the embedded ARM-Linux platform. 8itable data acquisition from sensors and control
of physical processes, the drivers for interfacifgilab with several communication protocols
including serial, Ethernet, and Modbus are implet@@nrespectively. The developed platform has the
following main features:

* It enables developers to perform all phases ofidwelopment cycle of control systems within a
unified environment, thus facilitating rapid devateent of embedded control software. This
has the potential of improving the performancehefrtesulting system.

* It makes possible to implement complex control tejees on embedded platforms, for
example, robust control, model predictive controptimal control, and online system
optimization. With this capability, the embeddedtfdrm can be used to control complex
physical processes.

* It significantly reduces system development cosinkis to the use of free and open source
software packages. Both Scilab and Linux can belyfrdownloaded from the Internet, thus
minimizing the cost of software.

While Scilab has attracted significant attentioousad the world, limited work has been conducted
in applying it to the development/implementatiorpadctically applicable control applications. Buche
et al. [8] presented a rapid control prototyping envir@min based on Scilab/Scicos, where the
executable code is automatically generated for X.iROTAIl. The generated code runs as a hard real-
time user space application on a standard PC. fiaaeges in the Scilab/Scicos environment needed to
interface the generated code to the RTAI Linux @& described. Hladowsldt al. [9] developed a
Scilab-compatible software package for the analgsid control of repetitive processes. The main
features of the implemented toolkit include viseation of the process dynamics, system stability
analysis, control law design, and a user-friendhgrface. Considering a control law designed with
Scicos and implemented on a distributed architectwith the SynDEXx tool, Ben Gaiet al. [10]
proposed a design methodology for improving theévsare development cycle of embedded control
systems. Mannorét al. [11] presented a complete development chain, fieendesign tools to the
automatic code generation of stand alone embedaleiriot and user interface program, for industrial
control systems based on Scilab/Scicos.

The rest of this paper is organized as followgh&nnext Section, we introduce the primary software
tool used, i.e., Scilab. Section 3 discusses tlftevare design lifecycle in embedded control systems
and presents the design methodology adopted inpeper. In Section 4, the implementation of the

Sensors008, 8 5504

platform is described. Details of three major comgrts, i.e., hardware, software, and interfaces, ar
given. The developed system is tested in Sectiogitg an illustrative example. Experimental results
are presented. We conclude the paper in Section 6.

2. The Scilab/Scicos Environment

Scilab (http://www.scilab.org) [12, 13] is a freadaopen source scientific software package for
numerical computations, which provides a powerfugro computing environment for engineering and
scientific applications. It has been developed égearchers from INRIA and ENPC, France, since
1990 and distributed freely and in open source thia Internet since 1994. It is currently the
responsibility of the Scilab Consortium, whch waarched in 2003. Scilab is becoming increasingly
popular in both educational/academic and indusén@ironments worldwide.

Scilab provides hundreds of built-in powerful prilves in the form of mathematical functions. It
supports all basic operations on matrices suchddgi@n, multiplication, concatenation, extraction,
and transpose, etc. It has an open programmingagmaent in which the user can define new data
types and operations on these data types. In plntjat supports a character string type thatveslohe
online creation of functions. It is easy to intedeéscilab with Fortran, C, C++, Java, Tck/Tk, LabVj
and Maple, for example, to add interactively Fortaa C programs. Scilab has sophisticated and
transparent data structures including matricess, ligolynomials, rational functions, linear systems
among others. It includes a high-level programmiagguage, an interpreter, and a number of
toolboxes for linear algebra, signal processingssic and robust control, optimization, graphs and
networks, etc. In addition, a large (and increagsmgnber of contributions can be downloaded from
the Scilab website. The latest stable release dalBgversion 4.1.2) can work on GNU/Linux,
Windows 2000/XP/VISTA, HP-UX, and Mac OS.

Figure 1. A screen shot of Scilab/Scicos on a PC.

| E
EEB‘El@l.Angl File Tools Edit
Ble|o|mlk| S—— 3

scilab-4

Copyright (c)
Consortium Scilab !

Sstartup execution: .
Tloading initial environment

~ Scicos Fxample

An example from the book

’T e @I “Modeling and Simulation

in Scilab/Scicos™:
Discrete-time controller to

‘ control a continuous-time
A< Ko ‘- system

Sensors008, 8 5505

Scilab includes a graphical system modeler and Isimu toolbox called Scicos
(http://www.scicos.org), which corresponds to Simkilin Matlab. Scicos is particularly useful in
signal processing, systems control, and study etiong, physical, and biological systems. It enables
the user to model and simulate the dynamics of idylynamical systems through creating block
diagrams using a GUI-based editor and to compiléeisointo executable codes. There are a large
number of standard blocks available in the palettes possible for the user to program new bloicks
C, Fortran, or Scilab Language and construct afjbof reusable blocks that can be used in difteren
systems. Scicos allows running simulations in teak and generating C code from Scicos model
using a code generator. Scilab/Scicos is the oparce alternative to commercial software packages
for system modeling and simulation such as Matla8nk. Figure 1 gives a screen shot of the
Scilab/Scicos package.

3. Embedded Control Systems Design
3.1. Architecture

As control systems increase in complexity and fiometity, it becomes impossible in many cases to
use analog controllers. At present almost all adiers are digitally implemented on computers. The
introduction of computers in the control loop haany advantages [2]. For instance, it makes possible
to execute advanced algorithms with complicated mgations, and to build user-friendly GUI. The
general structure of an embedded control systemavié single control loop is shown in Figure 2. The
main components consist of the physical processgbeontrolled, a sensor that contains an A/D
(Analog-to-Digital) converter, an embedded compiatertroller, an actuator that contains a D/A
(Digital-to-Analog) converter, and, in some casesetwork.

Figure 2. General structure of embedded control systems.

Actuator) Physical) Sensor

Process
D/A A/D
| Network |
T Embedded Processor

Control Algorithms

The most basic operations within the control losp sensing, control, and actuation [3]. The
controlled system is usually a continuous-time palprocess, e.g. DC motor, inverted pendulum, etc
The inputs and outputs of the process are contsiiowe signals. The A/D converter transforms the
outputs of the process into digital signals at dargpnstants. It can be either a separated umit, 0
embedded into the sensor. The controller takesgyehafrexecuting software programs that process the
sequence of sampled data according to specifiaaoalgorithms and then produce the sequence of

Sensors008, 8 5506

control commands. To make these digital signaldiegige to the physical process, the D/A converter
transforms them into continuous-time signals whih help of a hold circuit that determines the input
the process until a new control command is avalftom the controller. The most common method is
the zero-order-hold that holds the input constaet the sampling period. In a networked environment
the sequences of sampled data and the control codsmeeed to be transmitted from the sensor to the
controller and from the controller to the actuatespectively, over the communication network. The
network could either be wireline (e.g. fieldbush&met, and Internet) or be wireless (e.g. WLAN,
ZigBee, and Bluetooth). In a multitasking/multi-ppenvironment, as illustrated in Figure 3, diffdren
tasks will have to compete for the use of the sambedded processor on which they run concurrently.

Figure 3. A multitasking embedded control system.

r 2

Control Task 1 ScheduleJr »| Process 1 >
Control Task N —I —I »| Process N

Embedded Processor

3.2. Design Methodology

There is no doubt that embedded control systemstitot@ an important subclass of real-time
systems in which the value of the task depend®nigton the correctness of the computation but also
on the time at which the results are available F8pm a real-time systems point of view, the terapor
behaviour of a system highly relies on the avadlilghof resources. Therefore, it is compulsory toe
system to gain sufficient resources within a cartime interval in order that the execution of
individual tasks can be completed in time. Unfoatahy, most embedded platforms are suffering from
resource limitations, which is in contrast to gahg@urpose computer systems. There are many reasons
behind. For instance, embedded devices are oftejectuto various limitations on physical factors
such as size and weight due to the stringent agiit requirements. In this context, care must be
taken when developing embedded control systems thaththe timing requirements of the target
application can be satisfied.

Traditionally, the development cycle of a contrgktem consists of two main steps: controller
design and its implementation. These two stepsféea separated [4, 14], as shown in Figure 4, eher
the so-called V-model is given. While the controlesign is usually done by control engineers, the
implementation is the responsibility of system (safe) engineers. In the first step, the control
engineers model the physical processes using matleequations. According to the requirements
specification, the control engineers then designdbntrol algorithms. The parameters of the control
algorithms are often determined through extensivaulations to achieve the best possible
performance. A widely used tool in this step is BllatSimulink that supports modeling, synthesis, and
simulation of control systems. In this environméné physical processes are usually modeled in

Sensors008, 8 5507

continuous time while the control algorithms arscdetized to facilitate digital implementation.the
second step, the software engineers produce tlgrgons executing the control algorithms with the
parameters designed in the first step. There amengber of mature programming languages available
for the implementation. The system will be testpdssibly many times before the satisfactory
performance is achieved.

Figure 4. Traditional development process of control software

Implementation

a

The traditional development process features saparaf control and scheduling. The control
engineers pay no attention to how the designedraoatgorithms will be implemented, while the
software engineers have no idea about the requimsnad the control applications with respect to
temporal attributes. In resource-constrained eméedenvironments, the traditional design
methodology cannot guarantee that the desired texhpehavior is achieved, which may lead to much
worse-than-possible control performance. Furtheentre development cycle of a system that can
deliver good performance may potentially take agldime, making it difficult to support rapid
development that is increasingly important for coencial embedded products.

Figure5. Integrated design and implementation on a unifiatfgerm.

.n > Implementation
T Or

Integrated Platform

In this paper we adopt a design methodology thatgbs the gaps between the traditionally-
separated two steps of the development processhéwn in Figure 5, we develop an integrated
platform that provides support for all phases a Whole development cycle of embedded control
systems. With this platform, the modeling, syntBesimulation, implementation, and test of control

Sensors008, 8 5508

software can be performed in a unified environmditanks to the seamless integration of the
controller design and its implementation, this gesnethodology enables rapid development of high-
quality embedded controllers that can be usedahwerld systems.

4. Platform Implementation

In this section, we describe the implementatiorthaf above-mentioned platform for developing
embedded control systems. As shown in Figure 6 thatform is composed of three main
components: hardware, software, and interfacethdriollowing, details of each component are given,
respectively.

Figure 6. Layered architecture of the developed embeddetbptat

Actuator —» Physical Process |—» Sensor
A

4 N

Control Algorithms |-

Software

Interfaces

Hardware

\ Embedded Controller /

4.1. Hardware

The development board used in this work is basetherEP9315 processor from Cirrus Logic, as
shown in Figure 7. The EP9315 [15] is a highly gnéged system-on-chip processor for consumer and
industrial electronic products. It features an axbeal 200 MHz ARM920T processor design with a
memory management unit, separate 16KB instructamhe, 16KB data cache, 64MB SDRAM, and
32MB flash memory. Linux, Windows CE and many oteetbedded operating systems are supported.
The ARM920T has a 32-bit microcontroller architeetualong with a five-stage pipeline, and is
capable of delivering impressive performance ay \@v power.

The ARM920T core is augmented by the MaverickCruocprocessor. This coprocessor greatly
accelerates the ARM920T's single- and double-pratisnteger and floating-point processing
capabilities. The board includes a 10/100 Mbps faigtemedia access controller (MAC), a three-port
USB 2.0 host, running at 12 Mbps, three UARTS, artérnal interfaces to SPI, AC97, IIS audio,
PCMCIA, Raster/LCD, IDE storage peripherals, keypad touchscreen, etc. In addition, a LG-Philips
LB064V02-TD01 LCD is used to achieve user-friendilgplay.

Sensors008, 8 5509

Figure 7. The development board used.

4.2. Software

The key software packages used include Linux, TjrW¥M, and Scilab/Scicos. All these tools can
be freely downloaded from the Internet, see Tableidux is a clone of the Unix OS and is most
widely used as an operating system in embedde@mygstLinux has almost all the features of a
modern Unix system. The flexibility, scalabilityliability, and free nature of Linux have madent a
increasingly popular platform for a large numberagplications. The users can easily remove or
modify components of the system that are not neéaled specific embedded system. Linux can run
on many different types of processor architectul®tile real-time versions of Linux have been
available, the standard Linux is adopted in thigkmorimarily because there is no need of writing
kernel code. More discussion of the advantagesliamthtions of using standard Linux for real-time
applications can be found in [16].

Table 1. Websites for software packages.

Software URL
Linux www.linux.org
Scilab www.scilab.org
Scicos WWW.SCIC0S.0rg
TinyX www.xfree86.org
JWM www.joewing.net

TinyX is a family of X servers designed to be pararly small, which is well suited for embedded
systems. TinyX tends to avoid large memory allaratiat runtime, and tries to perform operations on-
the-fly whenever possible. Unlike the usual XFree86ver, TinyX does not require any configuration
files, and will function even if no on-disk fontseaavailable. With TinyX, the users can easily tuil
their own GUI applications. JWM is a window manafgrthe X11 window system. It is written in C
and uses only Xlib at a minimum.

Sensors008, 8 5510

4.2.1. Embedding Scilab

Scilab/Scicos was originally designed for PC-basgdtems but not embedded ARM-Linux
systems. Therefore, it is necessary to port SSkibds onto the embedded platform. Since the
majority of core codes of Scilab are written in tiFam, we first build a cross-compiler for g77 irder
to support cross-compilation of GUI, for exampléeTGUI system of Scilab/Scicos is based on X11,
and therefore the X11 server TinyX is included. réduce runtime overheads, we optimize/modify
some programs in Scilab/Scicos.

We have successfully ported Scilab/Scicos to théVIARux system (see Figure 10). To achieve
this goal, a number of files in Scilab and Linuxé&deen modified. The main tasks involved in this
process are as follows:

* Port Linux to the ARM platform;

* Port TinyX to ARM-Linux;

* Port JWM to ARM-Linux;

* Port Scilab/Scicos to ARM-Linux;

* Configure and optimize the embedded Scilab/Scicos.

For the first three tasks, technical instructiores available in the literature (see also websitted
in Table 1). Described below are some examples adifications made for the purpose of porting
Scilab/Scicos to ARM-Linux. Detailed programmingeogtions are omitted here for simplicity.

* Theconfi gur e file: on Line 5900, insert

int main ()
{
return O;
}
* Theconfi gur e file: on Lines 31696 and 31725, delete
{ (exit 1); exit 1; };

e /scilab/routines/xsci/wf_f _util.c:changeLine 76 to

extern char *getcwd();

e /scilab/routines/xsci/x_msc.c:insert

int sys_nerr;
char *sys errlist[];

4.2.2. Building Control Software in Scilab

Since the source codes of Scilab and Scicos aspémdient of the underlying system platforms, on
the ARM-Linux system it will still be feasible tosa programs, blocks, and toolboxes produced on
PCs. Scilab has a variety of powerful primitives foogramming control applications. Most of them
can be found in toolboxes suchgeneral systems and contrahdrobust control toolboxThere are
several different ways to realize a control aldoritin the Scilab/Scicos environment. For instairice,
can be programmed as a Scilabci file written in the Scilab language, or visualizasl a Scicos
block linked to a specific function/program writtenFortran or C.

Sensors008, 8 5511

Figure 8. A PID controller in Scicos(a) Block. (b) Parameter setting dialog bofc)

Subsystem.
Set PID parameters
. Proportional |1
- -
Integral 1

Derivation |1
(@)
Dismiss oK
(b)

(©

| J

ja

Dt >

Iz

D>—»{)

I SR o]| S

ki

As a simple example, Figure 8 shows the implemimtaif a PID controller in Scicos [17]. The
PID control algorithm involves three critical paraters, i.e., the Proportional, Integral and Dereat
values. The proportional component determines éspanse to current error. The integral component
determines the response with respect to the sueceht errors. The derivative component determines
the response to the change rate of the error. $aeaan set these three parameters on the dialog bo
shown in Figure 8(b). The algorithm can be impletednas a (basic) block, see Figure 8(a), or a
subsystem that is composed of a number of inteexded blocks, see Figure 8(c).

4.3. Interfaces

Scilab supports several ways to interface extezodé such as Fortran and C programs. One way to
call external programs is, for example, to dynaftyciink the user-developed program with Scilab
using thd i nk primitive and then to interactively call the linkeoutine by thecal | primitive. This
facilitates the use of specific code, which mayabailable already from another system or perform
better in execution efficiency, in user-defined ttohsoftware.

In addition to software interfaces, embedded cdlet®© must also provide support for interfacing
Scilab with hardware 1/0O ports. At run time, an euded controller needs to sample via sensors the
output/state of the controlled physical process asoto compute the control command. The
corresponding operations will then be performedtlo& physical process through using actuators.
Therefore, Scilab has to communicate with other mmments in the embedded control system. To
address this issue, we developed the drivers,sas files, for interfacing Scilab with serial port,
Ethernet, and Modbus on the embedded Linux systéra.user interfaces for configuration of the
connections are also implemented. These develdPedhterfaces enable not only the basic operations,
l.e., sensing and actuation, within control systeing also the construction of networked, possibly

Sensor008, 8 5512

large-scale and complex, control systems. As agstithtive example, Figure 9 describes the procsdure
for retrieving data from the serial port.

Figure 9. Procedures to retrieve data from serial port. [@yvFehart; (b) Code.

START

int main(int argc, char

**argv){
Initialize pointers, buffer, etc. nt * porF =1
nt *serial speed=38400;
nt *stopbits=1;

nt *parity=0;
nt *handl eval ue;

Open serial port

i
i

¢ int *dat abits=8;
i
i
i
i

¢ nt *fd;
_ char buff[512];
Specify parameters *fd = opencon(port,

seri al speed, databits,
stopbits, parity,
handl eval ue) ;

Any data

available? while (1)
{
Serial read(fd, buff);
Serialwite(fd, buff);
Retrieve data from buffer }
close(fd);
exit (0);
}
END

(@) (b)

Figure 10. The embedded system developed.

A snapshot of the real system we developed is shimwkigure 10. More details about the
implementation of this system can be found in [18].

Sensors008, 8 5513

5. Experimental Test

In this section we conduct experiments on the agpexl embedded control platform. A water tank
controller is implemented. The setup of the expental system is shown in Figure 11. For simplicity
the water tank is simulated by a PC running ScHalebs. The PC and the embedded controller are
connected using Ethernet. The Scicos models ofveter tank running on the PC and the controller
running on the ARM-Linux system are depicted inufes 12 and 13, respectively.

Figure 11. Experiment system.

Virtual Water Tank Embedded Controller

Ethernet

Figure 12. Model of water tank.

Water Tank mo)
*

freq_div

¥

UDP-Serer_Read pujiw- _/-I-—-p- bt h-—h-+z. - f o _/—.___., UDP_Server WWiite . g 0000000.0
5

[s, w— g SORT g—

Figure 13. Controller on the embedded platform.

Vater Tank Controller Vo
Water Tank Controller

v

- iy
Y ¥
nm'

Sensors008, 8 5514

Figure 14. Control performance of the experiment system. g&}e®n outputlf = 0.1s);
(b) System outputh(= 0.5s).

IU:/\H |E|: /\
i N —

5 1 15 20 25 30 35 40 45 & 5 10 15 20 25 3 35 4D 45 &
Time (s) Time (s)

(@ (b)

The control performance of the system is showniguré 14, where the system output (denofed
is given for different sampling periods, i.b.= 0.1s and 0.5s, respectively. It is seen thatcterol
system delivers quite good performance, espeacidign the sampling period is 0.1s. In both cases, th
water level successfully reaches the desired akelO in the experiment) and remains steady afte
transient process.

6. Conclusions

In this paper we have developed an embedded platfioat can be used to design and implement
embedded control systems in a rapid and cost-effidashion. This platform is built on free and mpe
source software such as Scilab and Linux. Theretbeesystem development cost can be minimized.
Since the platform provides a unified environmentvhich the users are able to perform all phases of
the development cycle of control systems, the dgreknt time can be reduced while the resulting
performance may potentially be improved. In additto industrial control, the platform can also be
applied to many other areas such as optimizatimage processing, instrument, and education. Our
future work includes test and application of theedeped platform in real-world systems where real
sensors and actuators are deployed.

Acknowledgements

This work is supported in part by Natural Scienoarttation of China under Grant No. 60474064,
Zhejiang Provincial Natural Science Foundation dfira under Grant No. Y107476, and China
Postdoctoral Science Foundation under Grant No/@4P0232.

References and Notes

1. Embedded Systems Glossary, http://www.netrino.conv&lded-Systems/Glossary.
2. Wittenmark, B.; Astrom, K.J.; Arzén, K.-EEomputer control: An overviewFAC Professional
Brief, 2002.

Sensors008, 8 5515

10.

11.

12.

13.

14.

15.

16.

17.
18.

Xia, F.; Sun, Y.X.Control and Scheduling Codesign: Flexible Resouvtanagement in Real-
Time Control SystemSpringer: Heidelberg, Germany, 2008.

Arzén, K.-E.; Bernhardsson, B.; Eker, J.; Cervin, RPersson, P.; Nilsson, K.; Sha, Ihtegrated
Control and Scheduling, Research RepoBRept. Automatic Control, Lund Institute of
Technology: Lund, Sweden, 1999.

Albertos, P.; Crespo, A.; Vallés, M.; Ripoll, |. Bedded control systems: some issues and
solutions. InProc. of the 16th IFAC World Congres&ague, 2005pp. 257-262.

Bucher, R.; Balemi, S. Rapid controller prototypmgh Matlab/Simulink and LinuxControl
Eng. Pract.2006, 14, 185-192.

Chindris, G.; Muresan, M. Deploying Simulink Modaigéo System-On-Chip Structures. Rnoc.

of 29th Int. Spring Seminar on Electronics Techgg/May 2006

Bucher, R.; Balemi, S. Scilab/Scicos and Linux RTA unified approach. IRroc. of the IEEE
Conf. on Control Applications, Toronto, Canada, Asig2005% pp. 1121-1126.

Hladowski, L.; Cichy, B.; Galkowski, K.; SulikowsH.; Rogers, E. SCILAB compatible software
for analysis and control of repetitive processasPioc. of the IEEE Conf. on Computer Aided
Control Systems Design, Munich, Germany, Octob8628p. 3024-3029.

Ben Gaid, M.; Kocik, R.; Sorel, Y.; Hamouche, Rn#ethodology for improving software design
lifecycle in embedded control systems. Pmoc. of Design, Automation and Test in Europe
(DATE), Munich, Germany, March 2008

Mannori, S.; Nikoukhah, R.; Steer, Bree and Open Source Software for Industrial Preces
Control Systemdttp://www.scicos.org/ScicosHIL/angers2006eng.pdf

Campbell, S.; Chancelier, J.; Nikoukhah,NRdeling and Simulation in Scilab/Sci¢&pringer:
Heidelberg, Germany, 2005.

Qin, S.Y.; Hu, B.G; Li, S.; Gomez, C. (edsScilab Research, Development and Applications
Tsinghua University Press - Springer: Beijing, Ghig005.

Xia, F.; Tian, G.S.; Sun, Y.X. Feedback Schedulidg:Event-Driven ParadignACM SIGPLAN
Notices2007, 42 (12), 7-14.

The EP9315 platform; http://www.cirrus.com.

Bruzzone, G.; Caccia, M.; Bertone, A.; Ravera, @Gn8ard Linux for embedded real-time
manufacturing control systems. Rroc. of the 14th Mediterranean Conf. on Controldan
Automation (MED'06)Ancona, Italy, June 2006; pp. 1-6.

Scilab online help [4.1.2], http://www.scilab.orgdduct/man.

Peng, ZResearch and Development of the Embedded Comgriatigrm Scilab-EMB Based on
ARM-Linux Master Thesis, Zhejiang University: Hangzhou,&00

© 2008 by the authors; licensee Molecular Diver$itgservation International, Basel, Switzerland.
This article is an open-access article distributedier the terms and conditions of the Creative
Commons Attribution license (http://creativecommong/licenses/by/3.0/).

