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Abstract: In surgical knee replacement, the damaged knee joint is replaced with artificial
prostheses. An accurate clinical evaluation must be carried out before applying knee prosthe-
ses to ensure optimal outcome from surgical operations and to reduce the probability of having
long-term problems. Useful information can be inferred from estimates of the stress acting
onto the bone-prosthesis system of the knee joint. This information can be exploited to tai-
lor the prosthesis to the patient’s anatomy. We present a compound system for pre-operative
surgical planning based on structural simulation of the bone-prosthesis system, exploiting
patient-specific data.
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1. Introduction and Motivation

The knee joint can be severely damaged due to a variety of causes, such as arthritis or knee injury. This
can cause pain and inability to walk. In some cases, replacing parts of the joint is thus the appropriate
course of action. A total knee replacement is a surgical procedure whereby the damaged knee joint is
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replaced with artificial shells (prostheses), tied to the bone using a special cement. An accurate clinical
evaluation must be carried out before applying knee prostheses to ensure optimal outcome from surgical
operations.

Most patients suffer from long-term problems, such as loosening. This occurs because either the
cement crumbles or the bone melts away from the cement. In some cases, loosening can be painful
and require reoperation. The results of a second operation are not as good as the first, and the risks of
complications are higher. The accurate choice of materials can improve prothesis durability. However,
loosening can be mainly avoided (or at least postponed) by tailoring the implanted prosthesis to the
patient’s anatomical peculiarities. Studying the bone-prosthesis system and its evolution, estimating the
forces that will be acting on the prosthesis being implanted, can help to improve the lifespan of the
implanted material and tailor the prothesis to the patient’s anatomy.

Navigation systems for positioning of orthopaedic implants in individual bones are used in more and
more hospitals, and can be considered as the state of the art in orthopaedic surgery. These systems
take into account the patient-specific bone geometry and calculate the mechanical axes of the bones.
However, only these axes are considered when positioning the implant, excluding important information
about the inner bone structure (e.g., the interface between spongy and cortical bone parts, stiffness of
these parts, age, gender etc. of the patient, local degradation and reduction of the bone density, presence
of sclerotic (very hard) islands inside the bone). The surgeon is aware of all these individual structural
pathologies only after opening the bone, so that she has to choose an appropriate prosthesis during the
operation.

In the leading European teeth and jaw surgery, this decision is planned on the basis of advanced
structural analysis of the implant stability, where CT or cone beam-CT images of the patients provide the
interior structure of the bone. Since the CT-image techniques are rapidly developing and CT-devices are
commonly available in hospitals, the natural vision in the orthopaedic prosthetic field, and particularly
for knee-replacement surgery, is to empower the existing navigation systems with mechanical structural
simulation capabilities. This paper is a contribution to the proof of this concept.

Our aim is to design a simulation system that combines methods and algorithms which are simple and
robust, so that most of the phases in the modelling and simulation chain can be automated. This methods
should also be fast enough, so that the simulation process can be run online during the operation.

The only previous attempt in such direction we know about is MedEdit [1], a system that helps
surgeons in operation planning and post-operative outcome evaluation. Although this system is a useful
tool for analysis and visualisation, it has a number of drawbacks that reduce its usability in the clinical
practice. Namely,

• The final model is represented as a triangle mesh, but the interior density of the bone must be
known for stress estimation

• The algorithm to extract and classify bone structures from medical data works on a slice-by-slice
basis, rather than using the dataset as a whole; this reduces the chance of detecting long structures
spanning over different slices; moreover, it can detect only cortical structures

• The segmentation requires too much human intervention, since the user must set a number of seed
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points to initialise the algorithm and clean the resulting images from incorrectly assigned pixels

• No error control/estimation is provided by the various sub-units of the tool

In this paper, we present a system that is similar in scope to this work, but aims at overcoming its
limitations. We employ robust, automated algorithms for CT image classification and finite element mesh
generation. All simulation steps are integrated in a tool with a user friendly graphical interface which is
easy to manage by medical doctors and surgeons. This project is the joint work of a multidisciplinary
team including a prosthesis production company, LIMA spa [2], and the Radiology Department of the
Vittorio Emanuele Hospital of Catania, Italy.

2. System Overview

The system described in this paper simulates the structural properties of the bone-prosthesis system of
the knee joint. This study is motivated by the need of more accurate pre-operative planning procedures
for knee-replacement surgical intervention. The aim is a full, highly automated diagnostic system for pre-
operative guidance. Among other important issues, this system can help surgeons to select the prosthesis
that best fits patient’s anatomy among a wide range of sizes, or to design a custom-made one. To our
knowledge, this is the first compound system trying to answer to all the technical issues involved in such
an ambitious task.

Figure 1 shows a schematic diagram of our system for pre-operative planning of knee replacement
surgery. Various pieces of data are collected from different sources and processed. The first block is
related to bone features: computed tomography (CT) scans and mechanical properties. CT volume el-
ements (voxels) are classified into four different tissue classes (see Section 3.2.), in order to extract the
geometry of cortical (external) and trabecular (internal) parts of the bones. Then, mechanical properties
of the bone are estimated and mapped onto the CT scan (Section 3.3.). The second block encloses me-
chanical parameters and surface characteristics of the prosthesis, given by the manufacturer and plugged
into the system (Section 4.). A detailed mathematical description of the bone-prosthesis contact is de-
veloped (Section 5.). Mechanical data of the tibia and femur, and of the prosthesis are used together
with geometry for 3D meshing (Section 6.1.). The last block is related to simulation. 3D meshes and
loading conditions are used for FEM simulation (Section 6.1.). A method to deal with uncertainties in
the measurements has also been studied (Section 6.3.). The simulated stress results are mapped onto
the geometry of the bones for analysis and visualisation. Typical mechanical parameters for the specific
clinical case can also be taken from statistical studies about similar cases in the literature, using patients’
info such as age, weight, and sex.

In the following sections we discuss each of these issues.

3. Bone Modelling

We model two aspects of bone structures for stress simulation: geometry and mechanical parameters
of the bone. Geometry is extracted from CT scans of the patients’ knee joint using by means of an
automatic classification algorithm. A statistical generative model is employed together with a Maximum
A-posteriori Probability (MAP) classification rule [3]. The probability distributions used for classifica-
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Figure 1. Scheme of our system for pre-operative planning of knee replacement surgery.

tion are automatically learned from manually-annotated training scans. CT scans are used for two main
reasons. First, acquiring CT data for planning is common clinical practice before knee replacement in-
tervention. Second, CT scans give sufficiently accurate data for knee replacement surgery, as pointed out
in [4].

From a mechanical viewpoint, the bone is modelled as a three dimensional viscoelastic material. The
two regions composing tibia and femur, cortical and trabecular, posses highly different properties that
must be taken into account for an accurate stress simulation. These properties are measured by means of
a load test on small bone samples cut out from the bone at different positions. Then, they are mapped to
the geometry for stress simulation.

3.1. CT Data

The first step in creating a bone model out of medical volumetric data is to extract tissue information
from this data [5]. In this section, we address the problem of classifying CT data in order to tag cortical
and trabecular bone structures.

CT devices output volumetric scans arranged in stacks of 2D images, called slices∗. CT scans can be

∗Data is usually acquired using spiral scanning. Pixel values are interpolated from spiral data
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Figure 2. A CT scan of a 80-years-old patient, affected by osteoporosis and arthrosis. A
manual labelling is also shown together with the relative distribution of Hounsfield Units
(HU) values of two tissue classes: soft tissue and trabecular bone.

(a) First slice. HU
values are mapped as
grey values.

(b) Manual labelling
of the first slice.

(c) Distribution of HU values for soft tissue and trabecular bone of a dataset.

geometrically characterised by three factors: spatial resolution along slices (i.e., pixel size), inter-slice
distance, and slice thickness. Slice thickness is the portion of physical volume related to a pixel, i.e.,
the value of a pixel is influenced by the tissues lying a given distance apart along the normal to the slice
plane (axial view). This feature is responsible for the partial volume (PV) effect, i.e., the value of a pixel
is a combination of the contributions of each tissue enclosed in the volume related to the pixel.

Typical values for spatial resolution and inter-slice distance are, respectively, 0.5 × 0.5 mm, and
∼ 1 mm. Thus, CT datasets can be thought as 3D grids with elongated voxels†. Due to this anisotropy,
extending common segmentation algorithms to 3D is not straightforward, since most of them are de-
signed for isotropic data. Slice thickness is usually either equal to inter-slice distance, or twice as big.
That is, either the voxels touch or they overlap.

Overlapping slices can increase the PV effect leading to less neat differences between neighbouring
voxels belonging to different tissues. On the other hand, this modality offers a number of advantages.
First, due to the strong coherence between neighbouring slices, information about a pixel can be largely
inferred by the corresponding pixels in the neighbouring slices. Second, if some knowledge is available
for a slice, it can be safely propagated to neighbouring slices since they share a portion of their volumes.
Third, each structure in the data influences both the voxels sharing an overlapping volume. This data
replication can help balancing the PV effect. Finally, this modality is common clinical practice in most
radiology departments.

Apart from the dataset geometry, another factor plays a major role for data segmentation: the meaning
and range of data values. The content of a voxel is a scalar value, usually in the range [−1000, 3000],

†For this reason, hereafter we will use the terms pixel and voxel interchangeably.
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Table 1. Parameter settings used for the acquisition of the knee CT data employed in our
experiments.

Parameter Value
Exposure 200 Sv
kVp 140 kiloVolt
Slice thickness 1.3 mm
Slice spacing 0.6 mm
Slice resolution 512× 512 pixels
Number of slices 70–140

expressed in Hounsfield Units (HU). HU values are roughly proportional to the density of the material
in the sampled volume associated to the voxel. For example, water has a HU of about zero, and cortical
bone HU values are usually greater than 1000. This is of great help for segmentation of tissues on the
basis of their density. However, the range of values for different tissues often overlap. This is especially
true at articulations and for soft tissues and trabecular bone in aged patients, where osteoporosis reduces
the density of bones (see Figure 2). Thus, data values cannot be uniquely associated with specific tis-
sues i.e., the data cannot be partitioned using voxel intensity alone. This makes the classification task
more challenging and rules out simple thresholding techniques. Moreover, defining a similarity function
between neighbouring pixels is hard, since the same tissues often have uneven distributions of intensity
values in different areas (e.g., the cortical tissue of the femur has lower HU values in areas close to ar-
ticulations). Hence, region-growing or edge detection algorithms are unable to effectively cope with this
data. Finally, automatically separating adjoining bones, as needed by stress simulation, is a hard task
due to PV effects generated by the limited spatial resolution of the CT in the axial direction.

Nine knee datasets were imaged at the Radiology Department of the Vittorio Emanuele Hospital of
Catania. The data were captured by means of a Multidetector CT Scanning (MDCT) device in spiral
mode, using the acquisition parameters reported in Table 1. The age of the patients ranged from 70 to
80 years and all of them suffer from osteoporosis and arthrosis. This choice is motivated by the fact that
this is one of the most difficult cases (due both to age and to severe osteoporosis and arthrosis) and the
most widespread in clinical cases of knee replacement surgery. The acquired datasets were manually
labelled by expert radiologists of the Vittorio Emanuele Hospital. 75% of the labelled datasets were used
for learning, and the remaining were employed for testing.

A large variety of segmentation methods have been developed for medical image processing. Nonethe-
less, ad-hoc solutions are often preferred to properly detect complex structures [6], such as vessels,
organs, or skeletal structures. Most of them do not provide uncertainty estimates about segmentation re-
sults. This is a serious drawback for mechanical simulations, since they require a reliable error measure.
Finally, and most important, segmentation algorithms group pixels into regions but do not label regions
with a semantic meaning. Hence, they lack a real classification mechanism.

Active contours [7] and level sets [8] have been effectively used for image segmentation. They provide
smooth, closed contours and can be coupled with statistical methods. However, active contours must
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deal with special cases due to contour sampling, while level sets are too computationally cumbersome
for practical use in clinical practice.

3.2. Classification and Volume Segmentation

Since our classification model is intended to be used for surgical pre-operative planning, one of our
main objectives is computing, and possibly bounding, the classification uncertainty. This is a good prop-
erty because it is intuitive and is easily related to background knowledge of medical experts. Basically,
one would accept the output of classification if the algorithm is p-percent sure about the result. Hence,
one can choose to classify only the pixels whose probability of belonging to a certain class is above
a user-defined threshold. Uncertain classifications can be regarded as instances of the partial volume
effect. We choose this possibility, and let uncertainties go through meshing (Section 6.1.) up to the stage
where uncertainties are modelled for stress simulation (Section 6.3.).

A statistically-founded approach is used in [9] to infer the percentage of different tissues within each
voxel due to the partial volume effect. Each voxel is modelled as a mixture of contributions from
different tissues. Tissue mixture are searched to maximise the posterior probabilities of observing the
corresponding data. However, rather than labelling real data to compute HU distributions, they assume
that the HU values of each tissue class are normally distributed. Our collected data show that this
assumption does not hold for the knee region (Figure 3(c)). A learning procedure is clearly needed to
build a reliable classification system.

Our approach [10] employs a simple generative model to classify voxels in a CT dataset into four
classes: void volume, soft tissue, trabecular bone, and cortical bone. The likelihood functions involved
in the computation of posterior probabilities are modelled by Gaussian Mixture Models (GMM), and are
learned using the Expectation-Maximisation (EM) algorithm. The data we used for supervised learning
were manually labelled by the radiologists of the Vittorio Emanuele Hospital in Catania. Our algorithm
shares some similarities with Lu et al.’s [9] method. While they model voxels as mixtures of contributions
from different tissues, we use a single label for each pixel. This may seem a simplification, since our
model cannot capture explicitly partial volume effects of the data, as they do. There are two reasons for
this choice. First, there is no straightforward manual labelling procedure for supervised learning models.
Basically, one can ask radiologists to give a single classification for each pixel (crisp classification), not
to guess the percentage of a pixel occupied by a certain tissue (fuzzy classification). Second, there
is a loss in classification granularity since partial volume effects are not explicitly modelled by the
classification mechanism. However, reduced granularity is countervailed by the greater discriminative
power of learned statistics.

Suppose we want to partition our data intoN different classes. We denote with ck the k-th class. Let us
define a number of feature functions F1(.), . . . , FM(.) on the pixel domain. We use a simple generative
approach [3] to learn the model for the posterior probability P (ck|F1(z), . . . , FM(z))) for each pixel
z. We model the likelihoods P (F1(z), . . . , FM(z)|ck) using GMMs (one for each class). Manually-
annotated training datasets are used to learn the likelihoods, using the EM algorithm [3]. We assume
that the priors P (ck) are uniformly distributed. One might argue that these probabilities are different
for each class and that we can compute them from our training sets by counting the number of pixels
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in each class. However, too many uncontrolled elements can affect the percentage of bone pixels over
the total volume, such as biological factors (e.g., age, sex, osteoporosis), and machine setup parameters
(e.g., percentage of patient tissues contained into the imaged volume). Hence, equiprobability of the
priors P (ck) is a reasonable choice. Assuming equiprobable priors, by the Bayes’ theorem we get

P (ck|F1(z), . . . , FM(z))) =
P (F1(z), . . . , FM(z)|ck)∑
k P (F1(z), . . . , FM(z)|ck)

(1)

where the evidence can be expressed in terms of likelihood functions alone.
The posterior probabilities p̂k(z) = P (ck|F1(z), . . . , FM(z))) are used to classify unseen data. A

MAP rule is used to get crisp classifications. For each pixel z the most probable labelling is

C(z) = arg max
ck

[p̂k(z)] (2)

with associated probability p̂C(z) = max [p̂k(z)]. Being conservative, a strict rejection rule is employed
to retain only highly probable classifications (low uncertainty). Thus, we accept this classification if
p̂C(z) ≥ ε, where ε is a user-defined threshold which bounds the classification uncertainty. If we

Figure 3. Rejection rule. Probability distributions for two classes, conditioned by the HU
value (our simplest feature). The threshold ε is used for rejection of low-probability classifi-
cations (see text). The shadowed region depicts the rejection interval.

restrict to two classes, c1 and c2, and to a single feature F1(z) for the sake of visualisation, our simple
rejection option can be depicted using the diagram in Figure 3. Pixels classified as cortical bone with
high uncertainty are used for FEM simulation as well (see Section 6.), accounting for this classification
uncertainty.

As pointed out before, the HU values of pixels do not suffice to get a robust classification. Pixel
values can be affected by noise which rules out simple pixel-wise partitioning methods. Moreover, the
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distributions HU values of different classes can largely overlap (Figure 2) especially for aged patients
or for patients affected by osteoporosis or arthrosis. For this reason, we employ a more robust pixel
analysis by looking at the neighbourhood, which can give useful information to estimate the probability
of pixels to belong to a certain class, given their surrounding context. Hence, we employ a set of features

Figure 4. Multiscale feature descriptors employed.

at different scales to capture the variability of HU values in the surrounding context of a pixel.
For the sake of exposition, we discuss our multiscale approach for a slice. For each scale s, we employ

a s × s window centred around the interest pixel. We define vs = (Fs,N(.), Fs,E(.), Fs,S(.), Fs,W (.)) as
the mean of the HU values for four regions in the surrounding window: North (N), East (E), South
(S), and West (W) (see Figure 4). In our implementation, we use the HU value of the interest pixel
together with the feature vectors vs. We choose these features to selectively evaluate the surrounding
context of a pixel in four directions. We do not use circular features since they would bring less useful
information, being independent from orientation. We also use simple mean instead of more complex
distance weighting since distance is accounted for using multiple scales. Due to the dimension of feature
windows, especially in larger scales, a special treatment should be reserved to border pixels. In our
implementation, we do not bother about image borders since in our application interest pixels always lie
in the central area of CT scans.

This model is easily extended to handle volumetric data, provided that the anisotropy of voxels is
taken into account. Namely, than taking the same number of samples along the slice plane and across
slices would favour the direction orthogonal to the slices. Hence, the neighbourhood of the interest voxel
is chosen to be approximately cubic.

The learned model is used to assign to each pixel the probability to belong to a certain class. The MAP
rule discussed above can be used to get the final crisp classification. Alternatively, the user can enforce a
threshold on these probabilities to bound the classification uncertainty. A volumetric model is generated
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by labelling cortical and trabecular bone voxels with low uncertainty. Voxel with high uncertainties are
regarded as partial volume voxels.

Figure 5. An example of a slice classified using our classification method. The colour codes
are as follows: White for cortical bone, blue for trabecular bone, red for soft tissue, and black
for background.

(a) Input slice. (b) Crisp classification using the MAP
rule.

(c) Adding a thin layer of cortical tis-
sue to separate trabecular bone from
soft tissues.

(d) Traced cortical region after propa-
gating user selection.

(e) Final crisp classification superim-
posed to the input slice.

Figure 6(b) shows an example of crisp classification, obtained using our approach with a MAP rule. In
this example, the cortical part is broken due to misclassification. This prevents the simulation algorithm
to work at all. Hence, a mechanism must be introduced to force the cortical bone to be closed at all
times. The method we use is straightforward and works in two steps. First, a thin layer of cortical bone
is artificially drawn to separate soft tissue from internal (trabecular) bone (see Figure 6(c)). Second, the
user is asked to select the cortical part of the bone of interest by clicking into a single slice. The outline of
this selection is deemed as the outer layer of the bone and, most important, is perfectly closed. This thin
outline is then expanded to a width specified by the user as a fraction of the diameter of the bone section
(Figure 6(d)). Notice that this is anatomically consistent, since the width of cortical bone is proportional
to its size. This information is then propagated to the whole dataset, without any human intervention.
The voxels of neighbouring slices are marked if they are classified as cortical tissue and lie close to the
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final cortical bone of the current slice. The cortical area to which the marked voxels belong is selected
and the outline is used to repeat the process.

Figure 6. Surface model showing of the cortical tissue of a knee joint. Notice that the the
bones of the articulation are neatly separated.

As shown in Figure 6, this algorithm produces the desirable result of keeping bones separated. Hence,
it is little sensitive to the partial volume effect.

3.3. Bone Mechanical Parameters

The bone is modelled as a three dimensional viscoelastic material. The cortical region is much stiffer
than the trabecular part and has a higher density, therefore it carries most of the load. To a first ap-
proximation, each region is considered homogeneous and isotropic, with the viscoelastic parameters
determined by means of relaxation tests [11, 12]. Small cylindrical samples of the bone are cut out, both
from the cortical and trabecular regions. Then, the samples undergo a load test with an ad hoc micro-
compression machine (Figure 8(a)). This machine applies a sudden (compressive) strain to the sample
and keeps it constant during the tests. A force transductor measures the reacting compressive force as a
function of time (relaxation test).

The bone is modelled as a five parameter viscoelastic material, as illustrated in Figure 8(b). The
parameters are determined by fitting the measured response using the analytical solution of the relaxation
predicted by the model (Figure 8(c)).
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Figure 7. Determination of the mechanical viscoelastic parameters of the bone.

(a) Microcompression
machine.

(b) Five-parameter
model for the linear
viscoelastic properties
of the bone.

(c) Least square fit of the time response of
the system.

Non homogeneity of the bone might be also taken into account. Several cylindrical samples should be
cut from the bone both in longitudinal and radial directions with respect to the main axis of the bone, and
their mechanical properties should be measured as above. Doing this way, one obtains the parameters in
a set of specific points in space. The properties for all points can be obtained by interpolation.

4. Prosthesis Modelling

In the case of total knee replacement, the damaged cartilage and bone are removed and replaced
by a man-made surface of metal and plastic. The main parts of a knee prosthesis are: plastic patellar
component, metal femoral component, plastic tibial spacer, and metal tibial tray. In our approach we
investigate only the two main parts of the prosthesis: metal femoral component and metal tibial tray (see
Figure ??).

Our aim is to simulate interactions between the tibial tray and a tibial bone and between the femoral
component and a femoral bone. It is assumed that both metal parts are linear elastic materials. The
prosthesis is not simulated separately from the bone. Therefore, an important step is positioning of the
prosthesis in a cut bone and the grid generation for the bone-prosthesis system. This is described more
in details in the next sections. A scheme for boundary conditions applied for bone-prosthesis system is
depicted in Figure 13

5. Mathematical Description and Multi-Scale Modelling of the Bone-Prosthesis Contact

Individual characteristics of patient’s bone structure are accounted for in biomechanical models by
employing specific material laws and their parameters. The contact zone between bone and prosthesis
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Figure 8. Metal tibial tray (on the left) and metal femoral component (on the right)

is of great importance. The local mechanical strain produces a biological stimulus, which leads to bone
building [13–15] and to in-growing of the new bone tissue into the pores of the rough coating of the
prosthesis. Different microscopic roughness and mechanical properties of the coating imply different
effective contact parameters, such as contact stiffness, kn = σn/un, and friction coefficient, µ = |στ |/σn,
on the interface between bone and prosthesis.

Figure 9. Bone-prosthesis-coating

In this section we discuss a highly accurate multi-scale homogenisation approach developed for the
analysis of the contact zone, which allows to calculate the effective macroscopic contact stiffness and
friction coefficient on the basis of the microstructure of the coating as well as the elastic properties for
the coating, prosthesis and bone materials. The precalculated effective contact parameters are used in
the finite element simulation of the mechanical contact problem for the prosthesis-bone system.

Let uε be the interface jump in the displacement vector, ε be the small parameter, denoting the ratio
between the coatings roughness and the macro-size of the bone-prosthesis system; nmicro denotes the
unit outward normal vector of the bone and g + εḡ is the initial interface gap (see Figure 10). Then, the
local non-penetration condition for each coating point x ∈ Sε (see [16]) is

uε(x) · nmicro(x,
x

ε
) ≤ g(x) + εḡ

(x

ε

)
. (3)
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Figure 10. Local and two-scale non-penetration conditions.

(a) Non-penetration contact condition for
micro-rough interface.

(b) Scale separation by homogenisation approach for contact problems.

The following proposition about non-standard anisotropic macroscopic non-penetration condition was
proved in [16] by using a two-scale asymptotic homogenisation technique:

Proposition. For the local non-penetration contact condition (3), the anisotropic macroscopic non-
penetration condition will be given in the form{

knnu
macro
n (x) + knτu

macro
τ (x) ≤ kgng(x) for a.a. x ∈ S0

kττu
macro
τ (x) + knτu

macro
n (x) ≤ kgτg(x), for a.a. x ∈ S0,

(4)

where the effective contact parameters knn, knτ and kττ can be found for each known surface micro-
profile from the following formulas

kαβ =
1

|T |

∫
SrealC (σmacro)

(αmicro(x, ξ) · αmacro(x))(αmicro(x, ξ) · βmacro(x))dsξ, (5)

kgα =
1

|T |

∫
SrealC (σmacro)

(αmicro(x, ξ) · nmacro(x))(ξ)dsξ, α, β = n, τ.

The diagonal and tangential macro-stiffnesses, knτ and kττ , will imply some tangential drag forces,
which can be interpreted as friction forces. The drag forces caused by knτ , kττ can be represented in
the form of the Coulomb’s friction with the homogenised friction coefficients µ =

|knτ |
knn

+ kττ
knn

∣∣∣uτun ∣∣∣.
This macroscopic contact condition will be used for numerical computations of the macro-problem later
on. The main result here is that even starting with the frictionless contact micro-problem with a rough
interface, we end up with a macro-problem containing friction.

In Table 2, the normal contact stiffness, knn, and the friction coefficient, µ, for four coating layers with
different porosity and roughness are calculated for the case of the full micro-contact between the bone
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and the prosthesis. The coatings’ surfaces were given as volumetric voxel grid, containing key-points.
We interpolated the surfaces by orthogonal parabolic splines (see Figure 11) to obtain coordinates of
the micro-normal vector in each point of the micro-contact surface by the standard formula n(x, y) =
(−zx(x,y),−zy(x,y),1)√

1+z2x(x,y)+z2y(x,y)
. It can be seen that for given materials the magnitude of the friction coefficient can

Figure 11. Fragment of the coatings surface interpolated by parabolic splines using given
data points.

270

G
iv

en
 d

at
a 

po
in

ts

 2
.3

 2
.4

 2
.5

 2
.6

 2
.7

 2
.8

 2
.9

 3
 3

.1
 3

.2
 3

.3
 3

.9 4
 4

.1 4
.2 4

.3 4
.4 4

.5 4
.6 4

.7 4
.8 4

.9

-0
.1

76
-0

.1
74

-0
.1

72
-0

.1
7

-0
.1

68
-0

.1
66

-0
.1

64
-0

.1
62

-0
.1

6

differ in several orders. The friction coefficient strongly depends on the roughness and the porosity of
the coating layer.

According to Equation 5, the contact coefficients depend on the actual micro-contact area and are
independent of the stress-state only in the case of the full microscopic contact. In general, the micro- as
well as the macro-contact surface is unknown, depends on the contact stresses, and can be found after
solving the micro- as well as the macro-contact problem.

In many phenomenological contact formulas (see, e.g., [17]), contact conditions are assumed in the
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Table 2. Normal contact stiffness and friction coefficients for effective non-penetration con-
dition in case of full microscopic contact. Parameters for knn(u) using the expression (7) in
case of solution-dependent micro-contact surface.

Coating
Roughness, Rt, µm 150 ± 50 200 ± 100 200 ± 100
Porosity, % 15 ± 10 30 ± 10 15 ± 10
Normal contact 0.99 0.96 0.87
stiffness knn
Friction coefficient 9.78e-04 5.45e-02 2.21e-01
µ

Contact param. for
knn(u) from (7)
an 4.933230 2.337140 1.766300
bn 0.497877 0.382857 0.427986

form of the stress-displacement relations:

σn(h) = cn h
bn , στ (h) = cτ h

bτ

where cα, bα, α = n, τ , are material constants and the average penetration depth h is introduced as
a displacement of the mean line of the rough surface. According to [18], cn, cτ are proportional to

1
1−ν2

Prosth
EProsth

+
1−ν2coat
Ecoat

+
1−ν2

Bone
EBone

, where Ecoat, νcoat are effective Young’s modulus and Poisson’s ratio of the

coating calculated from the simple analytic Hashin composite sphere model (Christensen [19]) on the
basis of its porosity and elastic properties of the coating alloy, Ealloy, νalloy. Furthermore, according to
our terminology, h =< knnun + knτuτ − gn > and < gn >= Rt/2. Here < · > denotes the averaging in
the cross-section orthogonal to the macro-normal, i.e. < · >:= 1

|S0|

∫
S0
·dx̂. We obtain then the following

macroscopic contact law:

σmacn ≈ − 1
1−ν2

Prosth

EProsth
+

1−ν̂2
coat

Êcoat
+

1−ν2
Bone

EBone

(knn < un > +knτ < uτ > −Rt/2), (6)

σmacτ ≈ − 1
1−ν2

Prosth

µProsth
+

1−ν̂2
coat

µ̂coat
+

1−ν2
Bone

µBone

(kττ < uτ > +knτ < un >).

For the three coatings considered in Table 2, we performed many micro-contact simulations under dif-
ferent macroscopic contact stresses and displacements and approximated these experiments by the fol-
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lowing formulas:

kαβ(u) ≈ aαβ(< uτ > / < un >)· < uα >
bα−1, α, β = n, τ, bα ∈ [0.3; 0.6]. (7)

The calculated parameters for kn are presented in Table 2. The proposed method for estimation of

Figure 12. Simulation sequence: set the properties of the prosthesis, obtain contact condi-
tions, position the prosthesis, and solve the macroscopic contact problem.

(a) Input parameters for the coating layer and parame-
ters for the macroscopic contact problem.

(b) Positioning of the prosthesis and simulation results.

macroscopic contact conditions is implemented in the software KneeMech [20]. The steps for perform-
ing simulations can be seen in Figure 12. The macroscopic contact stiffness kn and friction coefficient µ
are calculated by using the mechanical parameters for the prosthesis and the coating as well as porosity
and roughness of the coating. After that, the prosthesis is manually positioned using a GUI. Then, the
full mathematical macroscopic contact problem for the bone-prosthesis system can be constructed. It
consists of equilibrium equations (8) with constitutive elastic relations (9) for the bone and prosthesis,
contact (3), (11) and boundary (12) conditions:

divσ(x) = f(x), x ∈ ΩBone ∪ ΩProsth (8)

σ(x) =
EK

2(1 + νK)(1− 2νK)
divu(x) +

EK
2(1 + νK)

∇u(x), x ∈ ΩK , K ∈ {Bone, Prosth} (9)

knn[u]n(x) + knτ [u]τ (x) ≤ kgng(x) for a.a. x ∈ S0 (10)

[u]τ = 0, as long as |στ | ≤ µ|σn| x ∈ S0, (11)

[u]τ = −λστ , if |στ | = µ|σn| x ∈ S0,

σ · n(x) = t(x) x ∈ ΓN , (12)

u(x) = g0(x), x ∈ Γu.
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Here, σn(x) = (σ(x)·n(x))·n(x) is the normal stress, στ (x) = σ(x)·n(x)−σnn(x) denotes the tangen-
tial stress vector, [u]n(x) := (u(x)|SProsth0

− u(x)|SBone0
) · n(x), is the jump in the normal displacement,

[u]τ = [u] − [u]nn(x) is the vector of jumps in the tangential displacements, g0 and t are components
of given vectors of the boundary displacements and traction (see Figure 13 for g0 = 0).

Finally, the macroscopic contact problem (8)-(12) will be solved by finite element method.

6. Simulation

The bone-prosthesis contact problem (8)-(12) describes the behaviour at the interface between the
bone and the prosthesis (Figure 14(a)). The simulation of the whole bone-prosthesis system uses a
finite-element discretisation. It is thus necessary to convert the voxel representation of the bone into
3D mesh with tetrahedral elements. A coarsening algorithm is employed to reduce the number of finite
elements. A penalty method [21–25] is used to solve the resulting linear system. We also provide a
sensitivity analysis method to handle uncertainties in the estimation of the mechanical parameters (see
Section 3.3.).

Figure 13. Resulting bone-prosthesis system and scheme of boundary conditions. Arrows
represents directions of the loading forces. The bottom part of the bone is fixed.

(a) (b)

6.1. Finite Element Discretisation

Let us denote Ω = ΩBone ∪ ΩProsth, V = {vi ∈ H1(Ω), i = 1, ..., N | vi(x) = g0i(x), x ∈ Γu}. The
elasticity problem without contact can be rewritten in a weak formulation as follows: find ui ∈ V such
that for all vi ∈ V ∫

Ω

aijkl
∂uk(x)

∂xl

∂(vi(x)− ui(x))

∂xj
dx+ (13)

≥
∫

Ω

fi(x)(vi(x)− ui(x))dx+

∫
ΓN

ti(x)(vi(x)− ui(x))ds.
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Since the tensor of elastic coefficients is symmetric, problem (13) is equivalent to the minimisation
of the functional:

I(v) =
1

2

∫
Ω

aijkl
∂vk(x)

∂xl

∂vi(x)

∂xj
dx

−
∫

Ω

fi(x)vi(x)dx−
∫

ΓN

ti(x)vi(x)ds (14)

on the set of vi ∈ V .
For convenience we will introduce the following notations:

a(v, v) =

∫
Ω

aijkl
∂vk(x)

∂xl

∂vi(x)

∂xj
dx, (15)

f(v) =

∫
Ω

fi(x)vi(x)dx+

∫
ΓN

ti(x)vi(x)ds, (16)

The domain Ω is represented by a domain Ωh consisting of tetrahedral elements. Each component of
displacements over each element is approximated by linear polynomials. On the basis of these tetrahedra
it is possible to generate a system of piecewise linear global basis functions {Φξ}. Using this basis we can
span a space Vh = {vi ∈ C(Ωh), i = 1, ..., N | vi(x) = g0i(x), x ∈ Γhu}, where Γhu is an approximation
of the boundary Γu by the triangles correspondingly to Ωh.

Now, if (vh)i is an approximation of the i-th component of the displacement field defined over Ωh,
then

(vh)i(x) =

Np∑
ξ=1

vξiΦξ(x) =: vξiΦξ(x), x ∈ Ωh, (17)

where vξi := (vh)i(xξ) and Np is the total number of grid points. The term (15) in (14) can be approxi-
mated as follows:

ah(vh, vh) = Aijαβv
β
j v

α
i , (18)

where

Aikαβ =

∫
Ωh

aijkl
∂Φβ

∂xl

∂Φα

∂xj
dx. (19)

An analogous approximation can be applied to the item (16):

fh(vh) = f iαv
α
i , (20)

where

f iα =

∫
Ωh

fiΦαdx+

∫
ΓhN

tiΦαds, (21)

and ΓhN is an approximation of the boundary ΓN by a finite element mesh.
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The resulting finite element approximation of the problem can be defined as follows: find (uh)i ∈ Vh,
i = 1, .., N which minimises the functional

Iδh(vh) =
1

2
ah(vh, vh)− fh(vh). (22)

The problem (22) is equivalent to solving the linear equation system. If contact conditions (6) are
taken into account then the problems becomes non-linear and the corresponding problem must be solved
iteratively. The simplest way for taking the contact conditions into account is by using of penalty method
and a successive iterative method [24]. In this case, the contract stress is calculated on the basis of known
displacements umh in the m-th iteration and the um+1

h can be found by minimising a similar functional:

Iδh(vh) =
1

2
ah(vh, vh)− fh(vh) +

1

δn

∫
ΓCh

[knn [umh ]n (x) + knτ [umh ]τ (x)− kgng(x)]+ [vh]n ds (23)

+
1

δτ

∫
ΓCh

[kττ [umh ]τ (x) + knτ [umh ]n (x)− kgτg(x)]+ [vh]τ ds,

where δn, δτ > 0 are small penalty parameters, chosen with respect to (6) as follows:

δn =
1− ν2

Prosth

EProsth
+

1− ν̂2
coat

Êcoat
+

1− ν2
Bone

EBone
,

δτ =
1− ν2

Prosth

µProsth
+

1− ν̂2
coat

µ̂coat
+

1− ν2
Bone

µBone
,

ΓCh is the discretised contact surface and [.]+ := max {0, .}. It is important to remark that all nodal
points in ΓCh are interface points. This means that in these points the displacements can have different
values in different materials. The corresponding linear system is solved using a preconditioned conjugate
gradient solver [26].

6.2. Hierarchical mesh coarsening

The numerical method for solving the elasticity problem for the bone-prosthesis system uses a tetra-
hedral mesh. Therefore, a conversion step from the voxel data to a tetrahedral mesh is required. The
simplest way is to start with a straightforward decomposition of a single voxel into five tetrahedrons.
This approach leads to a very large number of finite elements. The number of tetrahedra is five times
the number of voxels used. For real time applications it is necessary to reduce the finite element system.
Therefore, we developed an ad-hoc hierarchical mesh coarsening algorithm.

The idea is to apply local coarsening operations to neighbouring voxels being part of the same ma-
terial. Namely, if a small cubic neighbourhood of eight voxels lies entirely in the same structure the
voxels are combined to form a larger unit. This procedure is run recursively with the restriction that
neighbouring voxels differ at most in one level of coarsening. The advantage of this constraint is that
the resulting mesh shows smooth transitions from small elements at boundaries and interfaces to larger
element in the inner regions.

In order to make compatible mesh elements at different coarsening levels, we follow the approach
proposed by [27] and [28]. The computational time for mesh generation is reduced since all possible
tetrahedra which occur can be calculated in advance and stored in a look-up table.
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Table 3. Number of nodes and elements for fine and coarse tetrahedral meshes of a tibia
bone.

Coarsening Levels Number of Nodes Number of Elements Node reduction Time (sec.)

0 346 783 1 636 175 1.0 135
1 81 816 341 152 4.2 63
2 58 640 230 642 6.2 56
3 57 186 223 763 6.4 56

Depending on the geometry, mesh coarsening can dramatically reduce the number of nodes and ele-
ments, especially for large connected components. The maximum number of hierarchical levels of the
mesh can be controlled in order to avoid the creation of large elements causing a larger discretisation
error. Reduction factors and computational times are shown in Table 3 for a triangulated tibia. Simplifi-
cations up to a factor of six can be obtained. Some coarsening steps of the mesh are shown in Figure 14.

Figure 14. Tetrahedral mesh of the tibia with four levels of coarsening corresponding to the
values given in Table 3.

6.3. Dealing with Uncertainties

Determining the mechanical parameters for the bone of the patients is an error-prone process. As
such, they can only be determined up to a given precision. Modern mathematical tools for self-verified
computing allow us to solve the finite element problem considering the uncertain nature of the mechan-
ical parameters. Given the data as ranges of possible values, self-verified computing returns the range
of possible values for the results, or at least an outer bound (overestimation) of the actual physically
possible range.

Classical self-verified methods, however, such as those based on the Interval Analysis (IA) developed
in the ‘60s by Moore [29], are not suitable for application to finite element methods (FEM) when the
number of nodes and elements is very large. Naive methods will incur in extremely large bound overes-
timation, sometimes even failing to give meaningful results. More specialised methods, such as the one
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developed by Muhanna [30], which gives much better bounds, become computationally prohibitive as
the problem becomes large, since they cannot exploit the sparseness of the stiffness matrix.

Therefore, we developed a radically different approach based on Affine Arithmetic (AA), a self-
verified mathematical model developed by Stolfi and de Figueiredo [31]. This allows us to obtain very
quickly a first-order approximation of the result range. If further precision is needed, Muhanna’s IFEM
method can be used to calculate the reminder. The final range is guaranteed to be more compact than the
range obtained using Muhanna’s method alone.

Another significant advantage of our approach is that the uncertain problem is decomposed in a num-
ber of deterministic, classical FEM problems with the same left-hand side. All but one of these sub-
problems are independent, and therefore the problem is highly parallelisable. The number of problems
is equal to Nc + 1, where Nc is the number of uncertain mechanical parameters.

The method is tuned to handle uncertainties in the mechanical parameters on which the stiffness
matrix depends linearly. For example, the Young’s modulus E, the Lamé constants λ and µ, and so
on. For the viscoelastic problem with mechanical parameters E0, Ei, ηi(i = 1, 2) (see also section 3.3.)
solved with timestep ∆t, uncertainty modelling should consider expressions such as

Ei
1− exp

(
−∆t

ηi

)
∆t
ηi

as a single uncertain parameter, to preserve linearity.
For simplicity of exposition we will assume in what follows that only one mechanical parameter per

element is uncertain, and precisely the Young’s modulus. For the finite element E (i) we can write its
Young’s modulus E(i) in the form:

E(i) = E
(i)
0 + E

(i)
j εj

where εj is a noise symbol, an unknown such that |εj| < 1. E(i)
0 is the central value of the Young’s

modulus, while E(i)
j is the radius of its uncertainty.

Since the local stiffness matrix depends linearly on E(i), we can write it in the form

K(i) = K
(i)
0 +K

(i)
j εj (24)

where K(i)
0 comes from the central value of E(i) and K(i)

j comes from the Young’s modulus uncertainty
E

(i)
j .
The noise symbol index j is different from the finite element’s index i because it is possible for

different elements to use the same noise symbols; this happens, when their uncertainties is assumed to
be correlated. For example, under the assumption that the bone is homogeneous, we will have a single
noise index shared by all the trabecular elements, and a single (different) one for the cortical elements,
giving us a problem with two uncertainties.

More complex situations are also possible, up to the extreme case of a noise index (i.e. a distinct
uncertainty) for each element: this situation however is not physically sensible, as nearby elements are
likely to have highly correlated mechanical parameters.
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Regardless of the number of uncertainties Nc, however, the global stiffness matrix is obtained com-
bining local matrices in the form of Equation 24, and it will therefore have the form:

K = K0 +
Nc∑
i=1

Kiεi

whereK0 is the same matrix that would be obtained in the deterministic problem (ignoring uncertainties),
and the Ki are Nc matrices obtained from the uncertainties.

Since boundary conditions don’t usually depend on the uncertainties, the left-hand side matrix of our
finite element problem takes the form M = M0 +

∑
Miεi where

M0 =

[
K BT

B 0

]
,

Mi =

[
Ki 0

0 0

]

The form assumed by our problem when uncertainties are take into account is therefore

(M0 +
∑

Miεi)u = f (25)

where u is the vector of the unknowns (displacements and lagrangian parameters) and f is the given
right-hand side.

Since the dependency of u from M is nonlinear in the εi, we can write u as the sum of a linear part
ua and a linearisation of the nonlinear part ul. The linear part will be in the form

ua = u0 +
∑

uiεi

so we can write explicitly
(M0 +

∑
Miεi)(u0 +

∑
uiεi + ul) = f

and by developing the product, we have

M0u0 +
∑

(Miu0 +M0ui)εi +
∑

Miujεiεj +Mul = f.

which must be satisfied for every choice of εi, i = 1, . . . , Nc in [0, 1]. This can only be satisfied (poly-
nomial identity rule) if the coefficients of εi on each side of the equation are equal, and therefore it must
be

M0u0 = f,

Miu0 +M0ui = 0 ∀i = 1, . . . , Nc,∑
Miujεiεj +Mul = 0
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which we rewrite as

M0u0 = f, (26)

M0ui = −Miu0 ∀i = 1, . . . , Nc, (27)

Mul = −
∑

Miujεiεj. (28)

The first two equations show that the terms in the linear part of the solution can be calculated by
solving for Nc + 1 sharp problems, all with the same coefficient matrix (M0).

There is therefore a very high level of parallelization possible: each sharp problem can be solved using
the FETI method described in Section 6.. In addition all equations except for the first are independent
of each other, so after u0 is found the ui can all be computed independently. And since the coefficient
matrix is the same in all equations, most global objects, preconditioners, and decompositions can be
computed only once and then reused across equations, reducing computational time.

For small uncertainties, the nonlinear part described by the last equation can be ignored. The results
thus obtained for the displacements allow us to easily calculate the total range by using the expression
u0 +

∑
|ui| where the absolute value is considered component by component. However, for subsequent

computations, such as stress and strain evaluation, it is better to keep the displacements in their affine
form, as the information on the correlation between components of the stress tensor greatly improves the
bounds of the von Mises equivalent stress.

Figure 15. False-colour visualisation of the relative stress uncertainty after a simulation.

The program can calculate and display minimum, maximum, and average estimated stress values, and
the relative uncertainty for each voxel (Figure 15). The most significant values that can be derived from
uncertainty evaluation are maximum stress, and relative uncertainty. The latter is defined as the ratio
between the range and the central value, for each noise symbol: for example, for the displacement we
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would have
∣∣∣u(j)
i /u

(j)
0

∣∣∣ as the relative uncertainty of the j-component of the displacement, with respect
to εi. Adding up the relative uncertainty for each noise symbol gives the total relative uncertainty.

Areas where maximum stress is reached are critical from the mechanical point of view, as they allow
the doctor to identify potential fractures that might result from the given prosthesis positioning. On the
other hand, the relative uncertainties describe how sensible each area is to the uncertainty of the problem:
their evaluation allows therefore a quick sensitivity analysis of the problem.

7. Discussion

The interdisciplinary research work described in the previous sections has come together in imple-
mentation into KneeMech [20], a software equipped with a friendly graphical user interface (GUI) for
preoperative planning.

The typical workflow starts with the selection of a CT scan dataset to use, which is automatically clas-
sified in a few seconds (Section 3.2.). The surgeon can then choose a cutting plane, a prosthesis model
to use, and where to position it by manipulating the bone and prosthesis systems in a 3D environment.
When she is satisfied with her pre-operative plan, she can launch the simulation. The system then takes
care of the finite element discretisation (Section 5.) and the numerical simulation (Section 6.1.). The user
can select whether sensitivity analysis must be used (Section 6.3.) or not (Section 6.1.). A safety factor
can be also calculated, which measures the ratio between the computed equivalent stress and the critical
stress. The result of the simulation is presented to the user in false colour (Figure 16). If the results are
not satisfactory, the surgeon can then choose a different cutting plane, prosthesis, or position, and restart
the simulation. Tibia and femur bones are handled separately.

Numerical examples have been ran to verify the effectiveness of the system. Real world applicability
is being assessed by LIMA [2] with an extensive testing phase of the prototype implementation on real
clinical cases. In this paper, we present a minimal set of numerical examples that show the influence of
different parameters on the final results. In particular, we show how maximal stress and displacement in
the bone are affected by varying the following parameters: bone morphology (structure), prosthesis size
and position, bone stiffness, and loading direction.

Bone structure is an extremely significant parameter; in Figure 17 we show a prosthesis touching
mostly spongy bone (Figure 18(a)) and the same prosthesis placed on cortical bone (Figure 18(a)): the
maximum equivalent von Mises stress in the first case is 5.5 MPa, while in the second case it’s only
1.8 MPa. As expected, the contact of the prosthesis with spongy bone results in much higher stresses.
It should be remarked that both examples are artificial and were chosen to pick up extreme cases: they
are irrelevant for clinical practice, but show the importance of choosing an appropriate cutting plane and
prosthesis size.

The influence of the prosthesis position is demonstrated by Table 4. Table 5 shows how the maximal
equivalent stress and vertical displacement depend on the stiffness of the cortical bone. Finally, we
loaded the same bone-prosthesis combination by 2 kN under different angles. The results are presented
in Table 6 in terms of stress and displacement for angles 0◦ and 45◦. Once again, prosthesis positioning
has the most significant impact, showing the importance of preoperative planning.

Our system provides a significant advance over previous solutions. Its major novelty consists in
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Table 4. Maximal equivalent stress via position of the prosthesis.

Position of the prosthesis
Equivalent stress (MPa) 1.25 1.1 1.18

Table 5. Maximal equivalent stress and vertical displacement via Young’s modulus of corti-
cal bone.

E (GPa) Equivalent stress (MPa) Vertical displacement (mm)

5 1.18 0.0316
10 1.19 0.0233

14.7 1.20 0.0152

Table 6. Stress and displacement for loading 2 kN under angles 0◦ and 45◦.

Angle, ◦ Equivalent stress (MPa) Horizontal displacement (mm)

0 1.1 0.0152
45 1.2 0.00722
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Figure 16. Sample screenshot from the KneeMech R© program, showing the result of the
simulation for a tibia.

Figure 17. Support of prosthesis at cortical or spongy bone.

(a) (b)
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providing most practical solutions to problems arising in such an interdisciplinary work. Other methods
in the literature do not address most of the problems related to robust bone and prosthesis modelling
from CT and mechanical data, as well as error handling. The latter is another important point of our
system. Little work has been published addressing the way classification errors, data acquisition errors,
and model uncertainties should be treated. Our system provides a simple solution with a solid theoretical
background.

The only attempt we know about to build a complete system is MedEdit [1]. A quantitative com-
parison with this system is not possible since the authors do not provide timings or other quantitative
analyses. Hence, we limit to a qualitative comparison. Our system has at least four advantages with
respect to MedEdit. First, an error-bounded classification mechanism is provided instead of a simple
region growing segmentation algorithm. User intervention in the classification stage is considerably re-
duced with respect to the MedEdit system. A single click on one slice suffices, while the segmentation
algorithm in MedEdit requires some manipulations at the pixel level. Second, they extract a surface
triangle model of the bones rather than a full solid tetrahedral mesh, as we do. This is a significant
limitation for stress simulation. They solve this problem by allowing a mixed model, given by the sur-
face mesh plus the voxel model. Voxels are decimated by a sub-sampling algorithm. In our system we
decimate tetrahedra using a wiser strategy. Third, no means of estimating mechanical parameters is pro-
vided. They simply assume that parameters are available, which is not obviously true. Finally, MedEdit
does not allow the introduction of uncertainties in the simulation. Our system can handle uncertainties
at various steps of the workflow, such as tissue classification, parameter estimation, and finite element
simulation.

The model used to solve the problem with uncertainties also introduces significant advantages over
existing, interval-based uncertain FEM methods, by allowing fast, parallelisable methods to obtain first-
order solutions and considerably reducing the overestimation of the result uncertainty.

The current system limitations are due to insufficient training data and computational limits. On the
one hand, they increase the uncertainties of the problem, and on the other hand limit the order at which
uncertainties can be handled, given the time limitations for the simulation in the clinical practice.

Higher order uncertainty handling comes at a considerable computation cost (as the increase is ge-
ometrical), but would ensure correctness of the results with larger uncertainties. Uncertainties can be
reduced by correlating the mechanical properties of the bone with the patient’s characteristics. This
could be achieved by collecting the information in a large statistical database (Figure 1), which would
include anonymous information on the patients’ age, gender, physical characteristics such as height and
weight, and presence of medical conditions such as osteoporosis or arthritis. This database would then
be used by matching this information with the specific patient being treated, using the correlation with
age, gender, height, and so on, to adapt the probability density functions used in the classification (Sec-
tion 3.2.), or the maximum range of the bone mechanical parameters (Section 3.3.).

Acknowledgements

This paper is dedicated to the memory of Prof. Angelo Marcello Anile, who inspired this work.
It has been partially funded by the following Italian research project: “Sviluppo di materiali e tec-



Sensors 2008, 8 5925

nologie per una gamma di artroprotesi di ginocchio ad elevata flessibilità applicativa”; MIUR (FAR, L.
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