[C002]

O-SUBSTITUTED DERIVATIVES OF 2,3-DIHYDRO-2,2-DIMETHYL-7-BENZOFURANOL - CYTOTOXIC ACTIVITY AND STRUCTURAL STUDIES

E. Hejchman and D. Maciejewska

Department of Organic Chemistry, Faculty of Pharmacy,

Medical University of Warsaw, 1 Banacha Str, 02 097 Warsaw, Poland

e-mail: <a>e_hejchman@hotmail.com; <a>domac@farm.amwaw.edu.pl

Several screening programs for novel anticancer agents employed investigation benzofuran derivatives isolated from natural sources as well as synthetic products. It was found **[1-3]** that flavaglines [comprising cyclopenta[b]tetrahydrobenzofurans (rocaglamides), cyclopenta[bc]benzopyrans and benzo[b]oxepines] obtained from several tropical and subtropical trees genus *Aglaia* show pronounced activity against different human tumor cell lines. Two examples of active dihydrobenzofuran derivatives are shown in Fig.1.

Fig.1. The structures of naturally occurring dihydrobenzofurans.

Novel cytotoxic benzofuran derivatives were also isolated from Brazilian propolis [4] (Fig.2).

Fig. 2. Propolis-benzofurans A and B.

Both compounds exhibited cytotoxicity toward highly liver-metastatic murine colon carcinoma and human fibrosarcoma cells.

Hellesbeux et al. [5] reported the synthesis of 2-isopropenyl-2,3-dihydrobenzofuran enantiomers. *In vivo* antitumor activity against a non-small cell bronchopulmonary carcinoma line (NSCLC-N6) of these enantioisomers had been investigated.

Inspired by these reports we submitted six O-substituted derivatives of 2,3-dihydro-2,2-dimethyl-7-benzofuranol [6] (see the structures in Fig.3) to anticancer assay to Division of Cancer Treatment and Diagnosis National Cancer Institute (Bethesda, USA).

chemical names:

7-(3-*t*-Butylamino-2-hydroxypropoxy)-2,3-dihydro-2,2-dimethylbenzofuran hydrochloride (1HCI).

7-[3-[4-(2-Methoxyphenyl)-1-piperazinyl]-2-hydroxypropoxy]-2,3-dihydro-2,2-dimethylbenzofuran hydrochloride (2HCl).

7-[3-[4-(4-Fluorophenyl-1-piperazinyl]-2-hydroxypropoxy]-2,3-dihydro-2,2-dimethylbenzofuran hydrochloride (3HCI).

7-[3-[4-(2-Methoxyphenyl)-1-piperazinyl]propoxy]-2,3-dihydro-2,2-dimethylbenzofuran (4).
7-[3-[4-(4-Fluorophenyl)-1-piperazinyl]propoxy]-2,3-dihydro-2,2-dimethylbenzofuran (5).
7-[3-[4-(2-Pyridyl)-1-piperazinyl]propoxy]-2,3-dihydro-2,2-dimethylbenzofuran (6).

		Growth T/C					
Compound	Concentration	Breast MCF 7	Non-Small Cell Lung NCI-H460	CNS SF-268			
1HCI	1 · 10 ⁻⁴ M	1.02	1.04	1.00			
2HCI	5 ⁻ 10 ⁻⁵ M	0.83	0.90	0.97			
3HCI	5 ⁻ 10 ⁻⁵ M	0.57	0.12	0.85			
4	5 ⁻ 10 ⁻⁵ M	0.71	0.43	0.82			
5	5 ⁻ 10 ⁻⁵ M	0.94	1.11	0.96			
6	5 ⁻ 10 ⁻⁵ M	0.43	0.81	0.92			

Fig.3. Structures and chemical names of compounds 1HCI – 6.

The results of the primary anticancer assay are presented in Table 1. Compound **3HCI** showed the highest level of ability to inhibit the growth of Non-small Cell Lung Cancer Cells NCI-H460 and was selected for 60 Cell Testing.

Table 1. Primary screening results.

We observe an exponential relation between the growth of cancer cells and calculated [7] lipophilicity log P (Fig.4).

Fig. 4. Relation between the growth of cancer cells and lipophilicity.

The exemplary equation for NCI-H460 cell lines:

 $y = -1.56\log P^4 + 16.91\log P^3 - 66.04\log P^2 + 108.87\log P - 62.84$

Leukemia RPMI-8226	Lung HOP-92	Colon HCT-116	CNS SF-295	Melanoma M14	Renal 786-0	MGM⁵
9.18	8.15	7.34	8.83	7.36	5.66	4.83
9.18	8.15	7.34 R ² = 0.9	8.83	7.36	5.66	4.83

Compound **3HCI** was passed on for evaluation in the full panel of 60 different cell lines, representing human leukemia, non-small cell lung cancer, colon cancer, CNS (central nervous system) cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer cell lines. Results from representative cell lines are listed in Table 2, along with mean graph midpoint (MGM) values for all 60 lines.

Table 2. Cytotoxicity (GI₅₀ in µM)^a of 3HCI

^aThe cytotoxicity GI_{50} values are the concentrations corresponding to 50% growth inhibition.

^bMean graph midpoint for all human cancer cell lines (ca. 60) tested.

The panels and cells employed included the following:

leukemia K-562, MOLT-4, RPMI-8226, SR;

non-small cell lung cancer: A549/ATCC, EKVX, HOP-62, HOP-92, NCI-H226, NCI-H23, NCI-H322M, NCI-H460, NCI-H522;

colon cancer: COLO 205, HCT-116, HCT-15, HT-29, KM12, SW-620; CNS cancer: SF-268, SF-295, SF-539, SNB-19, SNB-75, U251; melanoma: LOX IMVI, M14, SK-MEL-2, SK-MEL-5, SK-MEL-28, UACC-257, UACC-62; ovarian cancer: IGROV1, OVCAR-3, OVCAR-4, OVCAR-5, OVCAR-8, SK-OV-3; renal cancer: 786-0, A498, ACHN, CAKI-1, RXF 393, SN12C, TK-10, UO-31; prostate cancer: PC-3, DU-145; breast cancer: MCF-7, NCI/ADR-RES, MDA-MB-231/ATCC, HS 578T, MDA-MB-435, BT-549.

The NMR spectroscopy

Analyzing the ¹H NMR spectrum of **1HCI** (Fig.5) we have observed nonequivalence of both methyl groups at C17 in the dihydrofuran ring at ambient temperature. The coalescence point was found at 330 K. The energy of ring motions was roughly estimated on the basis of Eyring equation at coalescence temperature [8]. The value is 75 kJ/mol (Fig.5b). There is a stereogenicity centre at C-8 in the compound **1HCI**. This is a reason for non-equivalence of protons of the adjacent methylene groups.

Fig. 5. Coalescence of the methyl groups resonances in ¹H NMR spectrum of 1HCI.

To fully assign the resonances in solution we have used HMBC and HSQC NMR techniques. Exemplary spectrum is presented in Fig.6.

Fig. 6. The HMBC NMR spectrum of 1HCI

Until now, the ¹³C NMR data for reported derivatives of dihydrobenzofuran were not published. We have recorded the ¹³C NMR spectra in solution of compounds **1HCI** and **7** (see Fig.7 for atoms numbering).

7-(3-*t*-Butylamino-2-hydroxypropoxy)-2,3-dihydro-2,2-dimethylbenzofuran hydrochloride (1HCI)

7-[3-(4-Phenyl-1-piperazinyl)propoxy]-2,3-dihydro-2,2-dimethylbenzofuran (7).

The most probably assignment of resonances is given in Table 3

Table 3. ¹³C NMR chemical shift values [ppm] in CDCl₃ referenced to TMS.

Comp	C20,21	C17	C16	C15	C14	C13	C12	C11	C19
1HCI	28.32	87.57	43.22	128.73	118.70	128.54	114.70	143.07	147.91
7	28.26	87.20	43.32	128.45	129.12	117.70	113.16	151.22	147.85

Comp	C9	C8	C7	C4	*C1,2,3 C22	C3,5	C2,6	C24, 26	C23,27
1HCI	71.93	65.49	45.85	57.65	*25.92				
7	67.36	26.33	55.08		143.63	53.08	48.85	129.12	116.14

We were not succesful in obtaining suitable crystals for X-ray analysis. Moreover, we have analyzed the solid state structure by ¹³C CPMAS NMR technique. The results are presented in Fig.8 and Table 4. The ¹³C CPMAS spectrum of the most active compound **3HCI** shows a simple pattern of signals. That is an evidence of lack of polymorphism.

Fig.8. ¹³C CPMAS NMR spectrum of **3HCI**

C20,21	C17	C16	C15	C12, 13,14	C11	C19
26.80 26.41	88.36	42.69	130.52	118.09	156.06	147.48

С9	C8	C7	C22	C3,5	C25	C2,6	C24, 26
62.86	66.92	40.00	146.14	51.18 54.54	158.34	48.14 48.64	110.74

CONCLUSIONS

60 lines anticancer assay shows that 7-[3-[4-(4-fluorophenyl-1-piperazinyl]-2hydroxypropoxy]-2,3-dihydro-2,2-dimethylbenzofuran hydrochloride (3HCI) exhibits mild cytotoxicity. Structural examination by means of NMR spectroscopy revealed dynamics of the dihydrofuran ring in solution and lack of polymorphism for the compound 3HCI in solid state.

Acknowledgment

The cytotoxicity screening results were obtained under the auspices of the Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD, USA

REFERENCES

- Cui, B.; Chai, H.; Reutrakul, V.; Farnsworth, N.R.; Cordell, G.A.; Pezzutto, J.M. and Kinghorn, A.D. *Tetrahedron* **1997**, *53 (52)*, 17625-17632.
- [2] Lee, S.K; Cui, B.; Mehta, R.R.; Kinghorn, A.D.; Pezzutto, J.M. Chemico-Biological Interactions 1998, 115, 215-228.
- [3] Tsai, I-L.; Hsieh, C-F. and Duh, C-Y. *Phytochemistry* **1998**, *48* (8), 1371-1375.
- [4] Banskota, A.H.; Tezuka, Y.; Midorikawa, K.; Matsushige, K. and Kadota, S. J. Nat. Prod. 2000, 63, 1277-1279.
- [5] Hellesbeux, J.J.; Duval, O.; Seraphin, D.; Roussakis, P. Richomme, J. Enzyme Inhibit. and Med. Chem. 2003, 18 (2), 159-165.
- [6] Kossakowski, J.; Hejchman, E. and Wolska, I. Z.Naturforsch. 2002, 57b, 285-294.
- [7] Hyperchem 7.02 program, Hypercube Inc. Toronto, Canada, 2002.
- [8] Binsch, G. Band Shape Analysis, in: Dynamics Nuclear Magnetic Resonance Spectroscopy, Eds: Jackman, L.M.; Collon, F.A. Academic Press, New York, **1975**.