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Abstract:  A class of dynamical systems associated to rings of S-integers in rational function

fields is described. General results about these systems give a rather complete description of

the well-known dynamics in one-dimensional additive cellular automata with prime alpha-

bet, including simple formulæ for the topological entropy and the number of periodic con-

figurations. For these systems the periodic points are uniformly distributed along some sub-

sequence with respect to the maximal measure, and in particular are dense. Periodic points

may be constructed arbitrarily close to a given configuration, and rationality of the dynami-

cal zeta function is characterized. Throughout the emphasis is to place this particular family

of cellular automata into the wider context of S-integer dynamical systems, and to show

how the arithmetic of rational function fields determines their behaviour. Using a covering

space the dynamics of additive cellular automata are related to a form of hyperbolicity in

completions of rational function fields. This expresses the topological entropy of the auto-

mata directly in terms of volume growth in the covering space.

Keywords: cellular automata, entropy, rational function field, Adele ring, hyperbolic dy-

namics.
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1 Introduction

Cellular automata are a particular class of dynamical system studied by von Neumann [24] as a

primitive model for self{reproduction. Since then they have been widely studied in a variety of

contexts in physics, biology and computer science. A detailed discussion with extensive references

may be found in Wolfram's paper [31]. The state space of a cellular automaton is particularly

simple: it consists in one dimension of a one{dimensional array with values taken from a �xed

�nite alphabet, and their evolution in time is determined by a �nite or local rule. Nonetheless,

the global dynamical behaviour of time evolutes of a cellular automata may exhibit extremely

intricate behaviour and { in complete generality { understanding global dynamical invariants may

be genuinely intractable ([7, 14]).

In this paper two restrictions are placed on the cellular automata: �rst, that the alphabet

have cardinality a prime (though the methods apply equally well to prime{power alphabets once

`additivity' is interpreted in a way that re
ects a �nite �eld structure on the alphabet). Second,

that the local rule determining the time evolution be `additive'. This latter restriction is very

strong, and forces the cellular automata to be an endomorphism of a compact abelian group. The

measurable structure of these systems has been completely determined, [19].

Recently, an arithmetically natural class of algebraic dynamical systems, the so{called S{integer

systems, has been studied ([5, 27, 28]). These systems arise as extensions of simple algebraic

dynamical systems, and they have two features of particular interest. Firstly, their structure may

be studied using tools from number theory (in particular, the use of an adelic covering space to

relate the entropy of the complicated dynamics of the automata to the simple volume-growth

dynamics of the automata lifted to the covering space). Secondly, the collection of all such

systems extending a given initial system is parametrized in a natural way by a probability space,

giving some meaning to the idea of `typical' behaviour for algebraic dynamical systems. Special

cases of S{integer systems include the additive cellular automata on prime{power alphabets, and

results from [5] apply to give alternate proofs of the results of Favati et al. and Margara [10].

The arithmetic structure at work also gives additional information: for example, the periodic

points are not only dense but uniformly distributed with respect to the maximal measure along

time sequences where the number of periodic points grows. The algebraic structure of �nite

characteristic �elds gives a method for constructing periodic points arbitrarily close to any given

point.

Many of the results presented here are well{known; in particular Corollary 1 and 3, and Theo-

rems 4 and 5 may be found for example in the work of Margara et al., [4], [8], [10], and [22].

The paper is organized as follows. In Section 2 standard notation is �xed and the elementary

properties of linear cellular automata are recalled. Section 3 introduces the S-integer dynamical
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systems and shows how they contain some simple additive cellular automata. In Section 4 the

main dynamical properties of these automata are studied using methods from S-integers: topo-

logical entropy, numbers and distribution of periodic points. In Section 5 a quantitative denseness

of periodic points of periodic points is exhibited, and Section 6 contains a summary and some

remarks. Finally, Section 7 gives a short review of the number theory used in the paper.

2 Notation for cellular automata

Let A be a �nite set or alphabet, and let �A denote the two{sided sequence space

�A = AZ= fx = (xi)i2Z j xi 2 A 8 i 2 Zg:

The set �A will also be written �jAj since only the cardinality of the alphabet matters. The metric

on �jAj de�ned by

�(x; y) =
1X

i=�1

2�jijd(xi; yi); (1)

where d is any metric on the �nite set A, makes �jAj into a compact metric space. The left shift

� : �jAj ! �jAj de�ned by

(�(x))i = xi+1 (2)

is a homeomorphism of this compact metric space.

A cellular automaton is a continuous map � : �jAj ! �jAj that commutes with �. The evolution

of a con�guration x 2 �jAj under � is called temporal, and under � spatial. An easy consequence

of the compactness of �jAj is that any such map � must be given by a local rule: there is a

neighbourhood size k and a map

f : A2k+1 ! A

with the property that

(�(x))i = f(xi�k; : : : ; xi; : : : ; xi+k);

(this is an observation due to Curtis, Lyndon and Hedlund, [12]).

A similar de�nition may be made for automata on one{sided shift spaces: de�ne �+
jAj to be

the one{sided shift space AN, sum from 0 to 1 only in (1), and de�ne �+ to be the continuous

jAj{to{one map de�ned by (2) for i � 0 only. Any continuous �+{commuting map � : �+
jAj ! �+

jAj

is given by a one{sided local rule of the form

f : Ak+1 ! A
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with the property that

(�(x))i = f(xi; : : : ; xi+k)

for all i � 0.

If the alphabet is written A = f0; 1; : : : ; a� 1g for some a, identi�ed with the integers mod a

under addition, then a cellular automaton is called additive if it is an endomorphism of the group

structure on �a or �
+
a . It is clear that this holds if and only if the local rule is of the form

f(x�k; : : : ; x0; : : : ; xk) = a�kx�k + � � �+ a0x0 + : : : akxk mod a (3)

for some coeÆcients a�k; : : : ; ak 2 A: if � : �a ! �a is an additive cellular automaton, then �̂ is a

homomorphism of the dual group c�a = (Z=aZ)[u�1] that commutes with multiplication by u (the

dual of the spatial shift map). It follows that b� { and hence � { is determined by the polynomial

b�(1) = a�ku
�k + � � �+ a0x0 + : : : aku

k mod a

from which (3) follows. For a one{sided state space, all the ai with i < 0 are required to be zero.

The Tychono� topology on the compact group coincides with the topology de�ned by the metric

(1).

Surjective cellular automata preserve the Haar measure on the compact group �n or �+
n , and

this measure coincides with the independent identically distributed ( 1
n
; : : : ; 1

n
) measure. With the

exception of the proof of Theorem 4 we shall not be interested in measure{theoretic aspects of

cellular automata { [20] has some precise results on statistical phenomena in the evolution of

cellular automata.

3 S{integer dynamical systems

In this section we introduce a family of dynamical systems de�ned using the arithmetic of rational

function �elds: the examples below show how they relate to additive cellular automata. In order

to make this paper self{contained, we include proofs in simple cases: in particular, we give proofs

only for the case of �nite sets S.

Let k denote an A {�eld of positive characteristic: that is, a rational function �eld of the form

Fp(t) where Fp is a �eld with p elements, or a �nite algebraic extension of such a �eld. Associated

to k is a set of places P (k): each element of P (k) is an equivalence class of valuations. We abuse

notation slightly by identifying a prime element for each place with a corresponding valuation (see

Chapter III, x1 of [30] for the precise formulation).

Example 1 The simplest case is the �eld k = Fp(t) itself. For each monic irreducible polynomial

� 2 Fp [t] there is a distinct place � 2 P (k) with corresponding valuation given by

jf j� = p�ord�(f)�deg(�);
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where ord�(f) is the signed multiplicity with which � divides the rational function f . There is in

addition one exceptional place given by �(t) = t�1, with corresponding valuation de�ned by

jf(t)j� = jf(t)jt�1 = jf(t�1)jt:

It is conventional to regard this exceptional place as the `in�nite' one, and to write P1(k) = ft�1g.

The next examples show how the valuations work in practice. The �rst is a polynomial and

the second is a rational function.

Example 2 [1] Let p = 7 and consider the polynomial

f(t) = t6 + 2t5 + 3t4 + 5t3 + 6t2 + t+ 4:

This may be factorized using standard methods (from Chapter 4 of [18], for example) into

f(t) = (t + 3)(t2 + t+ 3)(t3 + 5t2 + 5t + 2):

Each of the three factors is irreducible over F7 (see Table C in the Appendix of [18]). This allows

us to calculate all the valuations of f . The three �nite valuations corresponding to irreducible

polynomials that divide f ,

jf jt+3 = 7�(1)(1) = 1
7
; jf jt2+t+3 = 7�(1)(2) = 1

49
; jf jt3+5t2+5t+2 = 7�(1)(3) = 1

343
:

Then the in�nite valuation

jf(t)jt�1 = jf(t�1)jt =

����1 + 2t+ 3t2 + 5t3 + 6t4 + t5 + 4t6

t6

����
t

= 7�(�6)(1) = 117649:

Finally, for �(t) any irreducible polynomial other than those appearing as factors of f ,

jf j� = 7�(0)(deg(�)) = 1:

[2] As an illustration of how valuations work for rational functions, let p = 2 and consider the

rational function f(t) = 1+t2

t
: Then����1 + t2

t

����
t

= 2�(1)(�1) = 2;

����1 + t2

t

����
1+t

= 2�(1)(2) =
1

4
;

(since, over F2 , 1 + t2 = (1 + t)2), and����1 + t2

t

����
t�1

=

����1 + t�2

t�1

����
t

=

���� t2 + 1

t

����
t

= 2�(1)(�1) = 2:

For all � =2 ft; 1 + t; t�1g we have jf j� = 1 since � does not divide f .
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For the general case { in which k is a �nite extension �eld of Fp(t) for some prime p, there are

�nitely many valuations of k with the property that they restrict to a given � 2 P (Fp(t)) for each

�: the details are in [30].

De�nition 1 Let k = Fp(t). Given an element � 2 knf0g, and any set S � P (k)nP1 with

the property that j�jw � 1 for all w =2 S [ P1, de�ne a dynamical system (X;�) = (XS; �(S;�))

as follows. The compact abelian group X is the dual group to the discrete countable group of

S{integers RS in k, de�ned by

RS = fx 2 k : jxjw � 1 for all w =2 S [ P1g:

The continuous group endomorphism � : X ! X is dual to the monomorphism b� : RS ! RS

de�ned by b�(x) = �x:

To explain this de�nition and to show how it relates to cellular automata, consider the following

examples.

Example 3 [1] Let k = Fp(t), S = ;, and � = t. Then RS = Fp [t], and so X = cRS =Q1
i=0f0; 1; : : : ; p � 1g = �+

p . The map � is therefore the full one{sided shift on p symbols.

Equivalently, the map � is the cellular automaton with one{sided state space and with local rule

f(x0; x1) = x1.

[2] Let k = Fp(t), S = ftg, and � = t. Recall that the valuation corresponding to t is jgjt = p�ordt(g),

so jtjt = p�1: The ring of S{integers is

RS = fg 2 Fp(t) : jgjw � 1 for all w 6= t; t�1g = Fp [t
�1]:

The dual of RS is then
Q1
�1f0; 1; : : : ; p�1g = �p, and in this case � is the full two{sided shift on

p symbols. Equivalently, the map � is the cellular automaton with local rule f(x�1; x0; x1) = x1:

[3] Let k = Fp(t), S = ftg, and � = 1+ t. Then X = �p is the two{sided shift space on p symbols,

and � is the cellular automaton with local rule f(x�1; x0; x1) = x0 + x1.

[4] Let k = Fp(t), S = ft; 1 + tg, and � = 1 + t. Then � is the invertible extension of the cellular

automaton in [3]. The Z2 dynamics under both the temporal and spatial maps for this example

is a version of Ledrappier's example [17].

[5] Fix the characteristic to be p = 2 and S = ftg. Then XS = �2, the full 2-shift. Following Favati

et al. in [10], additive local rules for cellular automata with k = 1 have a natural parametrization:

associate the local rule

f(x�1; x0; x1) = ax�1 + bx0 + cx1
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to the natural number

nf = f(0; 0; 0) � 20 + f(0; 0; 1) � 21 + � � �+ f(1; 1; 0) � 26 + f(1; 1; 1) � 27:

By suitable choice of the Laurent polynomial � in De�nition 1 we produce the following examples.

Polynomial f Rule number nf
0 0

1 204

t 170

t�1 240

t�1 + 1 60

1 + t 102

t�1 + t 90

t�1 + 1 + t 150

Other examples - in which the set S includes some �nite valuations - give certain isometric

extensions of additive cellular automata (see [5, 28] for the details).

4 Dynamical properties

Let � now be any uniformly continuous map of a metric space (X; �). A set E � X is said to be

(n; �){separated under � if for every pair x 6= y in E there is an m 2 f0; 1; : : : ; n � 1g with the

property that �(�m(x); �m(y)) > �: For each compact set K � X, let

sK(n; �) = maxfjEj : E � K is (n; �)� separated under �g;

hK(�; �) = lim sup
n!1

1

n
log sK(n; �); and

hK(�) = lim
�&0

hK(�; �);

(the expression under the limit means the limit is taken as � decreases to zero). Finally, de�ne

the topological entropy of � to be

h(�) = sup
K
hK(�): (4)

Notice that if X is compact, then hX(�) = h(�):
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The topological entropy of a map is a crude global measure of the exponential complexity of

the structure of the orbits of the map.

Theorem 1 The topological entropy of the S{integer system (XS; �(S;�)) is given by

h(�(S;�)) =
X

w2S[P1

log+ j�jw (5)

The proof of this result motivates the viewpoint adopted here. Roughly speaking, the number

theory (the adele ring) provides a covering space for the cellular automata, and the complicated

dynamics of the automata lifts to a `linearised' dynamics on the covering space. General results

about covering spaces show that the topological entropy of the automata coincides with the rate

of volume growth of the lifted map { expressed in equation (6) below.

Proof. This is shown in [5], Theorem 4.1 using the adelic method of [21]. A very simple proof is

outlined here for S �nite. This is easier than the general case because there are no Archimedean

places to deal with, the arithmetic `dimension' is one, and the topology on the covering space is

simply the product topology.

According to the Appendix, the group RS embeds as a discrete subgroup of
Q

�2S[P1
k� with

compact quotient, and there is a map p : kS ! ks=�(RS); Theorem 6 means that there is a

commutative diagram expressing the adelic covering space kS as follows:

kS=�(RS) �= XS -�(S;�)

XS �= kS=�(RS)
? ?

p p

kS kS-~�

Figure 1: The adelic covering space

in which the map p is a local isometry and ~� denotes multiplication by � in each coordinate..

It follows by Theorems 9 and 20 in [3] that

h(�) = h(~�) = lim
�&0

lim sup
n!1

�
1

n
log�

 
n�1\
j=0

~��j(B�)

!
(6)

where B� is the metric open ball of radius � around the identity, � is Haar measure on the locally

compact group
Q

�2S[P1
k�, and ~� is the lifted map (x�)�2S[P1 7! (�x�)�2S[P1 on the covering

space
Q

�2S[P1
k�.
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Since S is �nite, we may use the max metric on
Q

�2S[P1
k�. It follows that

B� = f(x�) : jxj� < � 8 � 2 S [ P1g:

Now the covering map from
Q

�2S[P1
k� onto X

S gives a local portrait of the hyperbolicity.

For example, if S [ P1 = f�1; �2; �3g say, and j�j�1 > 1, j�j�2 > 1, j�j�3 < 1 then the local

dynamics in a neighbourhood of the identity in XS is illustrated in Figure 2. The box B� is

transformed under ~��1 (multiplication by ��1) into a squashed box with sides of length 2�j�j�1�1 ,

2�j�j�1�2 , 2�j�j
�1
�3 in the directions corresponding to �1, �2, �3 respectively.

6

�j�j�1

?

-�j�j�2�

�
�

��+
�

��

�
�
��3
�
��

�j�j�3

�� ��

��B�

-~��1 �
�
�
�

�
�
�
�

�
�
���

�
��

�
�
��

k�2

k�1
k�3

Figure 2: Multiplying B� by �
�1 for S [ P1 = f�1; �2; �3g

In the covering space the e�ect of multiplying the box B� by �
�1 gives

~��j(B�) = f(x�) : j�
jxj� < � 8 � 2 S [ P1g = f(x�) : jxj� < �=j�jj� 8 � 2 S [ P1g:

Thus the set

D(n; �) =
n�1\
j=0

~��j(B�)

is a `box' with one side for each term � 2 S [ P1, and the `length' of each side is

minf�; �=j�j�; �=j�j
2
�; : : : ; �=j�j

n�1
� g =

(
� if j�j� � 1;

�=j�jn�1� if j�j� > 1:
(7)

It follows that

� (D(n; �)) = �jS[P1j �

0@ Y
�:j�j�>1

j�jn�1�

1A�1

;

which when substituted into (6) gives the formula (5). �

The Haar measure � is maximal in the sense that the measure{theoretic entropy of � with

respect to � coincides with the topological entropy h(�) by [2].
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Example 4 [1] The simplest application of equation (5) is to give the entropy of the full shift

on p symbols: let � be the S{integer dynamical system corresponding to k = Fp(t), S = ftg and

� = t. Then h(�) = log p arising from the one term jtjt�1 = j1
t
jt = p�(1)(1) = p in (5). Here the

local hyperbolicity portrait in the covering space is shown in Figure 3, showing that the system is

hyperbolic.

6

�jtjt�1 = p

?

��jtjt = p�1-

Figure 3: Multiplication by t is hyperbolic for S = ftg

[2] A less trivial example is the following. Consider the additive cellular automata on �7 =

f0; 1; : : : ; 6gZ de�ned by the local rule

f(x0; x1; : : : ; x6) = 4x0 + x1 + 6x2 + 5x3 + 3x4 + 2x5 + x6:

This map is given by the S{integer dynamical system � = �(k;S;�) with k = F7(t), S = ftg and

� = t6 +2t5+3t4+5t3+6t2+ t+4 2 F7 [t]. Using the factorization in Example 2[1] and equation

(5) we see that h(�) = 6 � log 7:

[3] Consider the `rule 90' cellular automata in Example 3[5]. This corresponds to the S{integer

dynamical system with k = F2(t), S = ftg and � = t�1 + t: Over F2 we have

t�1 + t =
1 + t2

t
=

(1 + t)2

t

as a factorization into irreducibles. Using Example 2[2] and formula (5) we see that

h(�) = log

����(1 + t)2

t

����
t�1

+ log

����(1 + t)2

t

����
t

= 2 � log 2:

Of course the expressions arising in Example 4 for S{integer systems which have the special

structure of additive cellular automata can be simpli�ed.

Corollary 1 An additive cellular automaton � : �p ! �p with local rule

f(x�`; : : : ; x0; : : : ; xr) = a�`x�` + � � �+ a0x0 + � � �+ arxr;
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(a�`; ar 6= 0) has topological entropy

h(�) =

8><>:
r � log p if r � �` � 0;

(`+ r) � log p if `; r � 0;

` � log p if � ` � r � 0:

(8)

Proof. The cellular automaton is given by the S{integer dynamical system with k = Fp(t), S = ftg

and � = a�`t
�` + � � � + art

r: Simply evaluate (5) for the valuations t and t�1. Assume �rst that

`; r � 0. Then

j�jt =

����a` + � � �+ art
r+`

t`

����
t

= p�(�`)(1) = p`;

j�jt�1 = j�(t�1)jt =

����a`t`+r + � � �+ ar
tr

����
t

= p�(�r)(1) = pr:

Summing gives h(�) = r � log p+ ` � log p.

For r � �` � 0, � is a polynomial in t so j�jt � 1 and j�jt�1 = pr: The case �` � r � 0 is

similar. �

Corollary 1 is a simple instance of a more general principle concerning directional entropies

in zero{dimensional algebraic dynamical systems of dimension at least 2: in that setting the

directional entropies are determined by `widths' of the support of certain polynomials by [15, 16].

It also gives the entropy of mixed dynamics (involving spatial and temporal motion): the map

�n�m is given by the S{integer dynamical system with S = ftg and � = tn �
�
a�`t

�` + � � �+ art
r
�

so the corresponding entropy is given by a similar formula.

Recall that a map � preserving a probability measure � is ergodic if any measurable set A with

�(A���1(A)) = 0 has �(A) = 0 or 1. Before turning to periodic points, notice that a simple

application of the Halmos criterion for ergodicity of compact group endomorphisms in [11] shows

that an additive cellular automata is ergodic for the preserved Haar measure if and only if the

polynomial corresponding to the local rule is non{constant. It follows from the formula below that

for ergodic additive cellular automata there are only �nitely many periodic points of each period.

Theorem 2 Let � : �p ! �p be the S{integer dynamical system with k = Fp(t), S �nite and �

non{constant. The number of points with period n under � is

Fixn(�) =
Y

�2S[P1

j�n � 1j� :

The upper growth rate exists and coincides with the topological entropy:

lim sup
n!1

1

n
logFixn(�) = h(�):
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Moreover, a sequence nj ! 1 with the property that 1
nj
log Fixnj(�) ! h(�) can be identi�ed

explicitly.

A sequence along which the growth rate of periodic points gives the entropy comes from the

last line of the proof.

Proof. Use the covering space construction from the Appendix again. Recall that the group

XS = R̂S sits as a quotient of the product Y =
Q

�2S[P1
k� by the discrete subgroup RS. Let

F be a fundamental domain for this quotient which has �nite Haar measure (see Appendix).

Standard harmonic analysis (for example, [13] Volume 1) shows that

Fixn(�) = j ker(�n � 1)j = � ((~�n � 1)F ) = modY (~�
n � 1) =

Y
�2S[P1

jf(t)n � 1j ;

where modY is the `module' (scaling of Haar measure) in the locally compact group Y .

Turning now to the upper growth rate, note that the erratic behaviour of periodic con�gurations

in cellular automata still arises in the additive setting (cf. Example 5[2] below), so there are some

diÆculties. The proof here comes from [5], included for completeness. Write

1

n
log Fixn(�) =

1

n

X
�2S[P1:� =2r��

log j�n � 1j� +
1

n

X
�2S0

log j�n � 1j�;

where S 0 is the subset of S de�ned by

S 0 = f� 2 S : � 2 r��g;

and r�� = fx 2 k : jxj� = 1g. Split S 0 into two sets A and B, where

A = f� 2 S 0 : j� � 1j� = 1g

and

B = f� 2 S 0 : j� � 1j� < 1g:

For each �j (j = 1; : : : ; m) 2 A we can associate integers d1; : : : ; dm � 2 such that j�n � 1j�j = 1

if and only if dj6 jn.

Consider next the valuations �1; : : : ; �l 2 B. If � 2 B we may write � = 1 +
P1

i=1 ai�
i; where

ai and � are as above, and j� � 1j� = p�s where s = 1
e
minfi : ai 6= 0g > 0 and ord�(�) =

1
e
. For

each �j 2 B label such s by sj, the coeÆcients ai by ai(j) and � by �j. Then

1

n

X
�2B

log j�n � 1j� =
1

n

X
�2B

log j� � 1j� +
1

n

X
�2B

log j�n�1 + � � �+ � + 1j�

=
1

n

lX
j=1

log j�jj
sj
�j
+

1

n

lX
j=1

log

�����n +
1X
i=1

bi(j)�j
i

�����
�j

;
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for computable coeÆcients bi(j) 2 r�j and j = 1; : : : ; l. This expression tends to zero if p6 jn.

Hence

1

n

X
�2S0

log j�n � 1j� ! 0 as n!1

through the set fn � 1 : p6 jn; dj6 jn for j = 1; : : : ; mg: It follows that p+(�) = h(�). �

Corollary 2 Let � : �p ! �p be an ergodic additive cellular automata corresponding to the

S{integer dynamical system with k = Fp(t), S = ftg and � 2 Fp [t�1]. Then there are

Fixn(�) = j�n � 1jt � j�
n � 1jt�1

points of period n. If q1; q2; : : : is an enumeration of the primes, then

lim
m!1

1

qm
Fixqm(�) = h(�) > 0:

A consequence of Theorem 2 is that the periodic points are dense { indeed, along any sequence

with the number of periodic points going to in�nity they are uniformly distributed with respect

to Haar measure.

Lemma 1 Let � be an ergodic S{integer dynamical system as in Theorem 2. If nj ! 1 is any

sequence of times for which Fixnj (�)!1, then the uniform periodic point measures at times nj
converge weakly to Haar measure as j !1.

That is, under the hypotheses of Lemma 1, for any continuous complex{valued function � on

�p,

1

Fixnj (�)

X
x:�n(x)=x

�(x) �!

Z
�p

�d�: (9)

Proof. Let the corresponding S{integer dynamical system be given by k = Fp(t), S and � as

usual. Since �nite combinations of characters are dense in the space of continuous functions on

the compact group XS, if (9) fails to be true it must fail with � = r for some non{trivial character

r 2 RSnf0g. This requires there to be a subsequence nj(m) !1 for which r 2 (�nj(m) � 1)RS for

all m. By the formula used in the proof of Theorem 2 this requires

1 >
Y

�2S[P1

jrj� =

���� RS

r �RS

���� � ���� RS

(�nj(m) � 1) �RS

���� = Fixnj(m)(�)!1;

which is impossible. �
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Corollary 3 If � : �p ! �p is an ergodic additive cellular automata, then the set of periodic

points is dense, and there are sequences of times along which the periodic points are uniformly

distributed with respect to the preserved Haar measure.

The precise behaviour of the periodic points in any non{trivial cellular automaton is erratic.

In the examples below we give some information for certain cases. Even for additive cellular

automata, there may be positive logarithmic growth rates other than the entropy. These examples

are part of a wider investigation into periodic point behaviour for S{integer dynamical systems in

[5]. One surprising result is that there are examples for which S may be in�nite but

lim sup
n!1

1

n
log Fixn(�) = h(�)

still holds. In fact Corollary 3 in [28] shows that additive linear cellular automata with prime

alphabet must have this property for almost every set S in the sense of probability, for all values

of the prime p excepting at most two.

A delicate measure of the complexity of the periodic point structure of any continuous map is

given by the dynamical zeta function

��(z) = exp
1X
n=1

zn

n
Fixn(�):

In particular, if this function is rational, then the number of periodic points of period n grows in

a simple recurrent fashion in n.

Example 5 [1] The simplest case is, as usual, the full shift on p symbols. This is given by

k = Fp(t), S = ftg and � = t. Using Theorem 2 we have that

Fixn(�) = jtn � 1jt�1 jtn � 1jt = pn;

so in this case 1
n
log Fixn(�) converges to h(�) = log p. The dynamical zeta function is rational,

given by

��(z) =
1

1� pz
:

[2] Let k = Fp(t), S = ftg and � = 1 + t. This is the additive cellular automata with local rule

given by

f(x0; x1) = x0 + x1:

If p = 2 this is `rule 102' in the sense of Example 3[5]. The local hyperbolicity portrait is shown

in Figure 4, which indicates why this system is non{hyperbolic.
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6

�j1 + tjt�1 = p

?

�j1 + tjt = 1

Figure 4: Local e�ect of multiplication by 1 + t

Using Theorem 2 we have

Fixn(�) = j(1 + t)n � 1jt�1 j(1 + t)n � 1jt = pn �

����tn + �n1
�
tn�1 + � � �+

�
n

n� 1

�
t

����
t

: (10)

It follows that the exact number of points of period n depends on the vanishing properties of

binomial coeÆcients modulo the prime p. The following simple argument (for details, see Section

9 of [5]) gives some insight into how complicated the periodic points really are { and shows that the

dynamical zeta function must be irrational. Write n = q �pordp(n) (that is, factor the prime p out of

n as many times as possible). Then using (10) we see that Fixn(�) = pn �p�p
ordp(n)

= pn(1�1=q) since

by construction q does not divide p. It follows that for any sequence nj !1 with njp
�ordp(nj) = q

for some �xed q, we have

lim
nj!1

1

nj
logFixnj(�) =

�
1�

1

q

�
log p:

That is, for this example the set �
1

n
logFixn(�)

�
has in�nitely many limit points. The complex behaviour seen here seems to be prevalent for most

S{integer dynamical systems { see [29].

The non-hyperbolicity is manifested in the extremely complex dynamics. This is illustrated

in Figure 5, where the time evolution of a random initial con�guration is shown for p = 3 (the

elements `0',`1', and `2' in F3 are coded white, grey, black respectively in Figure 5).

The last result in this section is a generalization of Example 5[2] that covers all additive cellular

automata on prime alphabet.
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Figure 5: Time evolution in a non-hyperbolic example

Theorem 3 If � is an additive cellular automaton on �p with p prime, and with local rule corre-

sponding to the polynomial

�(t) = a�`t
�` + � � �+ art

r

with a�`; ar 6= 0, then the dynamical zeta function of � is rational if and only if ` = r or ` and r

are both positive.

Proof. If ` = r then �(t) = art
r, so Theorem 2 gives

Fixn(�) = janr t
nr � 1jt � janr t

nr � 1jt�1 = pnr;

so

��(z) =
1

1� prz
:

If both ` and r are positive, then

j�(t)n � 1jt�1 =
��an�`tn` + � � �+ anr t

�nr � 1
��
t
= pnr:

On the other hand,

j�(t)n � 1jt =
��an�`t�n` + � � �+ anr t

nr � 1
��
t
= pn`;

so by Theorem 2 there are pn(r+`) points of period n and

��(z) =
1

1� pr+`z
:

For the remaining case, we may write

�(t) = a0 + a`t
` + � � �+ art

r;



Entropy 2000 , 2 158

with a`; ar 6= 0 (the case in which only negative powers of t are involved is similar). Then

j�(t)n � 1jt�1 =
��an0 + � � �+ anr t

�nr
��
t
=

����an0 trn + � � �+ anr
trn

����
t

= prn:

To compute the other part of the periodic point formula, write n = qpordp(n). Then, since q does

not divide p,

j�(t)n � 1jt =
����aq0 + qaq�10 a`t

` + � � �+ aqrt
rq
�n=q

� 1
���
t
=
��(an0 � 1) +Dt`n=q + : : :

��
t

where D is not divisible by p. It follows that

Fixn(�) =

(
prn if an0 6� 1;

pn(r�`=q) if an0 � 1:
(11)

From this we may exhibit in�nitely many limit points for the set f 1
n
logFixn(�)g, showing that ��

cannot be rational.

�

5 Constructing periodic points and `chaotic' behaviour

Finally, we use methods from ergodic theory and the arithmetic viewpoint above to give an

alternative proof of the result in [10] that additive ergodic cellular automata on prime alphabets

are `chaotic' in the sense of Devaney. Recall that a continuous map � on a compact metric space

(X; d) is regionally transitive if for every pair of open sets U , V in X there is an n 2 N with

�n(U) \ V 6= ;, has dense periodic points if the set
S

n2N Fixn(�) is dense in X, and has sensitive

dependence on initial conditions if there is a constant Æ > 0 such that for all x 2 X and any open

set U 3 x there is a y 2 U such that supn2N d(�
n(x); �n(y)) > Æ. Following [9], a map satisfying

all three properties is called `chaotic'.

Theorem 4 An ergodic additive cellular automata on �p for p prime is regionally transitive, has

dense periodic points, and has sensitive dependence on initial conditions.

Proof. Since the invariant Haar measure is a Borel measure whose support is all of the space �p,

regional transitivity follows at once from ergodicity (see [25], page 151-152 for the details). The

set of periodic points is certainly dense. Finally, it is well{known that sensitive dependence to

initial conditions follows from regional transitivity and dense periodic points by [1]. �

Theorem 5 Let � be an ergodic additive cellular automata on �p for p prime, and let x 2 �p be

any initial con�guration. Then there is a simple procedure for constructing a point of �nite period

n within distance � of x. Moreover, the period n may be chosen smaller than a constant times

log(1=�).
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Proof. If the support of the local rule of the automaton is a singleton (that is, the corresponding

polynomial is a monomial) then the automaton is a power of the shift and the result is obvious.

Assume next that the cellular automaton has a local rule that looks back as well as forward:

then the corresponding polynomial in Fp [t
�1] is

�(t) = c�`t
�` + � � �+ c0 + � � �+ c`t

`;

with both c�` and c` non{zero, and ` > 0; r > 0. Then by the `freshman's dream' in characteristic

p we have

�p
k

(t) = cp
k

�`t
�`�pk + � � �+ cp

k

0 + � � �+ cp
k

` t
`�pk : (12)

This means that the map �p
k

is the additive cellular automaton with local rule corresponding to

the polynomial (12). Since the support of this polynomial lies only on points whose coordinates

are multiples of pk, it is clear that a point y which is �xed under �p
k

may be constructed by

de�ning yj to be xj for all j with jjj < pk, and then simply using the local rule (12) and the

requirement that �p
k

(y) = y to write down the remaining coordinates.

Now assume that the local rule only depends on strictly positive co{ordinates: that is, the

corresponding polynomial is of the form

�(t) = c`t
` + � � �+ crt

r

with c`; cr 6= 0 and r > ` > 0. Then the same construction works: the automaton �p
k

has local

rule corresponding to the polynomial

cp
k

` t
`�pk + � � �+ cp

k

r t
r�pk ;

and it is straightforward to extend a �nite con�guration (xj)jjj<pk. The case of strictly negative

co{ordinates is similar.

The remaining case is where the polynomial corresponding to the local rule has the form

�(t) = c0 + c`t
` + � � �+ crt

r

for some c`; cr; c0 6= 0 and r � ` > 0. In this case there may be only one point of period pk

(for example, the `rule 102') cellular automaton has this property) so we need to use a di�erent

argument. By the argument used above,

�(t)p
k

= cp
k

0 + cp
k

` t
`�pk + � � �+ cp

k

r t
r�pk:

It follows that if D is the coeÆcient of t` in �(t)p
k�1, then

D � c0 + c`c
pk�1
0 � 0
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in Fp . In particular,D � 0 mod p. On the other hand, since c0 6= 0 in Fp , c
pk�1
0 = c

(p�1)(1+p+���+pk�1)
0 �

1, so the polynomial corresponding to the local rule of the automaton �p
k�1 is

�(t)p
k�1 = 1 +D � t` + � � �+ cp

k�1
r tr�(p

k�1):

Now construct a point y with period pk� 1 under � as follows. The point y must lie in the kernel

of the map corresponding to multiplication by

�(t)p
k�1 � 1 = D � t` + � � �+ cp

k�1
r tr�(p

k�1):

It follows that y must solve the equations

r�(pk�1)X
j=`

yj+N � 0

in Fp for all N 2 Z. It is clear that a solution can be found for which yj = xj for any�
r(pk � 1)� `

�
� 1 speci�ed j, and choosing these to be the central co{ordinates of x gives the

result.

The estimate on the size of period needed follows from a simple calculation: two points in �p

that agree on all coordinates j with jjj < s are distance on the order of 2�s apart under �. �

This result gives a very simple and general construction for this class of cellular automata.

Example 6 [1] To illustrate the simple case of Theorem 5, we �nd a periodic point that agrees

with the point

x = : : : 0110̂101| {z } : : :
(the hat indicates the zero position) on the indicated positions for the `rule 90' cellular automata.

The polynomial de�ning the local rule here is �(t) = t�1 + t 2 F2 [t
�1], so following the procedure

in Theorem 5 we write down

(t�1 + t)4 = t�4 + 4t�2 + 6 + 4t2 + t4 = t�4 + t4

mod 2. Then it is clear that we may write down a point y that is �xed by �4 and that agrees with

the displayed positions in x. In fact there are two such points:

y = : : : 100 0110̂101| {z }011 : : :
and

y0 = : : : 101 0110̂101| {z }111 : : :



Entropy 2000 , 2 161

[2] Now consider the same point

x = : : : 0110̂101| {z } : : :
for the `rule 102' cellular automaton. Following the procedure, we will need k = 4, so the point y

will be a point in the kernel of the automaton with local rule corresponding to

(1 + t)15� 1 = t+ t2 + � � �+ t15:

Thus a point may be constructed by appending 8 arbitrary symbols to either side and then using

the rule that any �fteen adjacent symbols in y must sum to zero to build the rest of the point:

y = : : : 00 0110̂101| {z }00000000| {z } 01 : : :
6 Conclusion and remarks

[1] The machinery developed for S{integer dynamical systems may be used to give insights into

the dynamical behaviour of the special class of additive cellular automata with prime alphabets.

Very exact information about how the periodic con�gurations lie in the space is shown, and a

simple formula for the topological entropy and for counting periodic points is arrived at.

[2] The method used involves a `linear' covering space kS that comprises a direct product of �elds.

The lifted map ~� may be thought of as having generalized eigenvalues on this space, and the

modulus of these eigenvalues is given by the set fj�j�g�2S[P1: It is reasonable to view an additive

cellular automaton as hyperbolic if this set does not contain 1. For example, the eigenvalues for

the `rule 90' cellular automaton are found in Example 2[2] to have sizes 2 (since here S = ftg

and jt�1 + tjt�1 = jt�1 + tjt = 2). The eigenvalues for the `rule 102' cellular automaton has one

eigenvalue of size 2 (since j1 + tjt�1 = 2) and one of size 1 (since j1 + tjt = 1). In this setting,

Theorem 3 shows that additive cellular automata have rational zeta function only when they are

hyperbolic, and in general the hyperbolic systems have much more straightforward dynamics.

Another manifestation of the simple dynamical consequences of hyperbolicity is the following.

If � is hyperbolic, then it is easy to check that it either has local rule corresponding to a monomial

or a polynomial involving both negative and positive powers of t. Since additive cellular automata

on prime alphabets are automatically bipermutative, a result of Shereshevsky and Afraimovich

[26] applies to show that any such cellular automaton is topologically conjugate to some power of

the one{sided full shift on p symbols.

[3] Additive cellular automata in general (with arbitrary alphabet) are not directly amenable to

the S{integer formalism.

[4] Some results on higher{dimensional cellular automata are available: in [23] it is proved that

an ergodic additive cellular automaton in two dimensions has in�nite topological entropy. The
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method of proof is to exhibit subsystems that are periodic in one spatial dimension that have dense

periodic points. An easy consequence of this work is therefore that additive cellular automata

in two dimensions are chaotic in the sense of Devaney. Other dynamical properties of higher{

dimensional cellular automata are in [22].

[5] The volume-growth approach to computing entropy used here does not extend to non-linear

automata, because the maximal measure is usually not homogeneous in the sense of [3]. Exact

calculations for certain individual non-linear automata have been carried out { an example is [6]

{ but in general the problem is completely intractable by [14].

7 Appendix

For completeness, we give a short introduction to the relevant parts of number theory used above.

The full story { the main theorems for adele rings of rational function �elds { is in [30] and in [5].

Let G be a locally compact abelian group. A character on G is a continuous homomorphism

� : G ! S1. The set of characters forms a group bG under multiplication, and when endowed

with the topology of uniform convergence on compact sets, Ĝ is again a locally compact abelian

group. The results on harmonic analysis used below are all standard and may be found in [13] for

example.

Let k = Fp(t), and let j � j� be a valuation on k de�ned as in Section 3. The valuation j � j�
de�nes a metric

d�(x; y) = jx� yj�

on the �eld k. Notice that this is an ultrametric in that a stronger form of the triangle inequality

is true:

d�(x; y) � maxfd�(x; z); d�(z; y)g

for all x; y; z 2 k�. The completion (in the sense of metric spaces) of k with respect to d� is a local

�eld k�. Each local �eld k� has a maximal compact subring,

r� = fx 2 k� : jxj� � 1g;

(closed under addition since the metric d� is an ultrametric). The invertible elements in the ring

r� form the multiplicative group

r�� = fx 2 k� : jxj� = 1g:

The �eld k� is then a locally compact non{discrete topological �eld, and so bk� is isomorphic to k�
(Chapter II,x5 in [30]). The explicit form of this isomorphism is important. De�ne a non{trivial
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character on k� by writing the elements of k� in the form

x =
1X
i=m

ai�
i (13)

for some coeÆcients ai 2 Fp , m 2 Z and � a chosen element of k (Chapter I, x4 of [30]) and then

setting �(x) =  (a�1) for an arbitrary non{trivial character  on Fp . Notice that the elements of

r� in the notation (13) are exactly those with m 2 N . Then the map

� : k� ! bk� (14)

de�ned by �(a)(x) = �(ax) is an isomorphism of topological groups between k� and bk�.
Now let S denote any �nite set of �nite valuations on k, and write T = S [ P1. Let

kS =
Y
�2T

k�;

elements of kS are called S-adeles. Since kS is a �nite product of locally compact non{discrete

�elds, we have

ckS �= kS; (15)

an isomorphism of topological groups. However, a specially constructed isomorphism will be

needed later.

Recall that the ring of S{integers in the global �eld k is de�ned in De�nition 1,

RS = fx 2 k : jxjw � 1 for all w =2 Tg:

The map

�(x) = (x; x; : : : ; x) 2
Y
�2T

k�

is an injective homomorphism � : RS 7! kS. The image of � is a copy of RS sitting inside kS,

and the main observation is the following.

Theorem 6 The subgroup �(RS) is a discrete subgroup of kS with compact quotient. Moreover,

there is an isomorphism between the quotient kS=�(RS) and the dual group cRS.

The map kS ! kS=�(RS) is the covering map used in the proof of Theorem 1

The isomorphism used to prove Theorem 6 has to be constructed with some care: starting

with the character � in equation (14) for � = t�1 extend it to the character �0(x; y) = �(x) on

f(x; y) : x 2 kt�1 ; y 2
Q

�2S k�g. Then �0 can be extended uniquely to a character �� on kS that
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is trivial on �(k). Then any character on kS may be written in the form (x; y) 7! ��(ax; by) for

x 2 kt�1 and y 2
Q

�2S k�. One may then check that the map from kS to ckS that sends (a; b) to

that character has the desired properties. For the full details, see Chapter IV, x2 of [30].

For S in�nite (in fact, for S comprising all the places of k) and for general k (that is, allowing

k to be a number �eld as well) this is one of the `main theorems' in adelic number theory: see

Chapter IV, x2 in [30].

Proof. Let dS denote the maximum metric on kS:

dS ((x�); (y�)) = max
�2T

fd�(x� ; y�)g: (16)

Let x 2 RS be a non{zero element. Then x is of the form h
g
where h; g 2 Fp [t] have no factors in

common and g can only be divisible by polynomials corresponding to valuations in S. If x = h is

actually a polynomial, then jhjt�1 = pdeg(h) � 1 by a calculation similar to that in Example 2[2],

so

dS ((x�); 0) � 1

by (16). If g is non{constant, then it must be divisible by some irreducible polynomial corre-

sponding to one of the �nite valuations � 2 S, so

jh
g
j� � p;

showing again that

dS ((x�); 0) � 1

by (16). It follows that every element of the subgroup �(RS)nf0g is distance at least 1 from

zero, so the subgroup is discrete. This implies that �(RS) is a closed subgroup of kS, and general

results on duality show that cRS
�= \�(RS) �= kS=�(RS)

?;

where

�(RS)
? = f� 2ckS : �(x) = 1 8 x 2 �(RS)g

is the annihilator of �(RS) in the dual group ckS. Now a careful examination of the exact form

of the isomorphism constructed as described in the discussion after Theorem 6 shows that the

subgroup �(RS)
? is the image of �(RS). ThuscRS

�= \�(RS) �= kS=�(RS):

This also shows that the quotient kS=�(RS) is compact since it is the dual group of the discrete

group RS. �

It remains only to exhibit a fundamental domain with �nite volume for the quotient map (this

is needed in the proof of Theorem 2). Of course Theorem 6 shows that such a domain must exist

{ the argument below gives a simple description.
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Theorem 7 A fundamental domain for the quotient map

kS �! cRS

may be chosen with �nite measure.

Proof. Let

R
(�)
S = fx 2 RS : jxjw � 1 8 w 2 Tnf�gg

for each � 2 T . Assume �rst that � 2 S. Then it is clear that

R
(�)
S \ r� = Fp (17)

since R
(�)
S comprises those rational functions h

g
2 RS with the property that only powers of the

polynomial corresponding to � appear in g, so intersecting with r� means the denominator must

be constant. On the other hand, h must be constant since jh
g
jt�1 � 1, so if h

g
2 k(�) \ r� both h

and g are constants. If � is the in�nite place the same proof works with t replaced by t�1, showing

that (17) holds for all � 2 T .

Now any element of k� may be written as a sum of an element of r� and an element of R
(�)
S

(this is easy to see using the notation (13) for elements of k�), so

k� = R
(�)
S + r� : (18)

Now let

F =
Y
�2T

r�:

Then �(RS) \ F = �(Fp), which is �nite, and kS = �(RS) + F . Since F is an open compact

subgroup of kS, this shows that the quotient map has a compact, hence �nite measure, fundamental

domain. �
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