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Abstract: We shall review different approaches to the entropy of self-gravitating systems in
General Relativity. Then we shall discuss in detail the macroscopic approach based on à la
Clausius point of view. Recent developments will be reviewed discussing the aims as well as
the assumptions which the framework is based on.
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1. Introduction

The idea that an entropy may be associated to black-hole solutions of field equations of General
Relativity (GR) has been first suggested in the ’70s by Bekenstein and Hawking (see [1],[2],[3]), relying
on earlier works by Christodoulou and Ruffini (see [4],[5]) about the possibility of extracting energy
from a black-hole (by describing in detail the physics of particles around a Kerr black-hole solution) ∗.

Bekenstein’s observations were based on a correspondence between the dynamical laws of (non-
extreme) black-holes and the classical laws of thermodynamics, which eventually lead him to identify
(modulo a universal factor) the entropy with the area AH of the outer horizon (which Christodoulou
had previously found to be proportional to the irreducible mass, i.e. the amount of mass that cannot be
reduced further by irreversible processes).

∗Christodoulou himself proved (see [4]) that a certain amount of the energy of a black-hole, though not all of it, can be
extracted, thus suggesting a thermodynamical interpretation, as the classical entropy is related to the difference between the
internal energy and the free energy of a gas.
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As Hawking pointed out (see [3]), due to quantum mechanical effects black-holes radiate as black-
bodies at a definite temperature T (that is related to the surface gravity κH at the horizon H; such a
temperature lies below the cosmic microwave background radiation for stellar black-holes). The temper-
ature T rapidly increases as the mass decreases, so that microscopic black-holes are very hot. Knowing
this temperature one can fix the universal factor for Bekenstein’s entropy to be 1/4. Endowing Hawking’s
temperature with a physical meaning is the key to consider black-hole entropy as a physical quantity.

While both the horizon area AH of a black-hole and its gravity at surface κH are macroscopic geomet-
rical quantities that are characteristic of the solution of Einsten equations under consideration, physically
speaking the entropy should be thought in terms of the microscopic states. This duality is well known
since the early times of classical gas theory: the entropy is expected to be both a microscopic and a
macroscopic quantity depending on the framework.

The microscopic setting based on microstate counting can be also reviewed in terms of information
theory †, and in fact the relation existing between irreducible mass and information was already stated
by Christodoulou. The fundamental origin of entropy was recognised by Bekenstein as a measure of
our ignorance about the internal state of matter fallen into a black-hole; a black-hole in fact destroys (or
permanently hides to an external observer) most of the detailed nature of the matter falling into it, owing
to the so called no-hair theorem.

Altough Shannon’s entropy seems to be different in nature from physical entropies, there is a strict
link between them. For example, gas macrostates can be realised by many different microstates and
entropy measures our ignorance about the particular microstate which actually realizes the macrostate
observed.

One can use Shannon’s notion of entropy for a physical system when the following requirements are
fulfilled:

(i) each microstate is equiprobable;

(ii) ergodicity: the system fills a dense open set of phase space and the probability of being in a region
is proportional to the volume of the region;

(iii) the phase space accessible to the system is finite (so that volumes can be normalised to estimate
probabilities).

Under these simple assumptions, in fact, the probability of a macrostate is directly related to the volume
(normalised to the accessible volume of phase space) of all microstates determining it. Thence Shannon
entropy measures our capacity (or better, our incapacity) to predict the microstate of the system knowing

†Following Shannon (see [6]), we may introduce the notion of entropy of a stream of characters (taken from a given
alphabet) as a quantification of the predictability of each character’s occurrence in terms of those previously transmitted.
Shannon entropy is defined as

S = −
∑

i

pi ln pi (1)

where pi is the probability (or the frequency) of the occurrence of the ith character of the alphabet. The function S is clearly
positive definite, vanishing when the stream is constant (just one character repeates on and on, when one ) and it is maximal
for completely random sequences.
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its past history. On the other hand this knowledge is clearly related to the possibility of extracting energy
from the system ‡, which is the link with the classical thermodynamical definition of entropy.

Unfortunately this approach is not directly applicable in GR. At a microscopic level, Quantum Gravity
is involved, which is still at a very problematic stage as a fully coherent theory. As a result a general
definition of entropy in terms of microstate counting is not likely to be available in the very near future.

On the other hand many interesting results have been obtained from a macroscopic viewpoint. The
definition of black-holes entropy in terms of the area of its horizon is well established in many general
situations (but not in the case of extreme black-holes). Relying on this, it was proposed to universally
extend the identification S = 1

4
AH (in Planck units). This simplified choice turns out, however, to be

invalid for larger classes of solutions.
A great contribution in this direction came from Hawking, Page and Hunter (see [7]), who studied

Taub-bolt solutions in full detail. Despite Taub-bolt is a family of singular solutions (see [8],[9],[10])
their singularities are not enclosed within a Killing horizon (due to the so-called Misner string running
along a z-axis). Although the physical interpretation of Taub-bolt solutions is not universally accepted, it
was proven that an entropy should be associated with them. However, the entropy of Taub-bolt solutions
deviates from the simple one-quarter of the area law proved for standard black-holes. This consideration
led eventually Hawking and his collaborators to propose a new and different interpretation which looks
at the entropy as a measure of the obstruction to defining a global foliation of spacetime.

A different approach, deeply related to statistical considerations based on a micro-canonical ensemble
formulation, was also pursued by Brown and York (see [11],[12]), who worked on a Hamiltonian formu-
lation for spatially confined gravitational system (see axiom (iii) above). In this framework macroscop-
ical energy and entropy are defined as quasilocal quantities. The main advantage of this approach is a
definition of conserved quantities for finite spatially extended systems which improves substantially the
standard ADM results (see [13],[14]) for asymptotically flat solutions.

2. The Geometry of Entropy in General Relativity

Microstate counting methods, Taub-bolt example, statistical approaches, alltogether seems to indicate
a sort of failure of a purely geometrical definition of entropy in GR; or, in other words, they seems to
suggest that the geometrically minded identification between the entropy and (the one-quarter of) the
horizon area is still to be considered fundamental just for (physically reasonable) stationary black-holes,
while in more general situations the geometric character of entropy is more difficult (or even impossible)
to be established.

However, starting from 1994 the picture has changed. In that year Wald et al. proposed a prescrip-
tion (see [15]), which subsequently was generalised by us (see [16],[17],[18],[19]) and shown to be
intrinsically and deeply geometrical. In fact, the original prescription of [15] was based on strong and
unnecessary hypotheses that partially but radically hide its clever geometrical content; in this formulation
Killing horizons a fundamental role which eventually prevents a geometrical interpretation of entropy
for the solutions with singularities that are not enclosed by Killing horizons. In our generalization, in-

‡More information we know, more energy we may extract from the system: imagine if we were able to predict when a gas
in a box will happen to be wholly contained in the right half of the box!
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stead, all the unnecessary hypotheses have been relaxed and we showed both the very geometric nature
of our prescription and that all cases mentioned above can be easily encompassed in this new geometrical
framework. In other words, the geometric nature of entropy in GR is present also when it is not easily
recognisable, and it provides in fact a unifying viewpoint.

The geometric nature of entropy in GR can be understood only after the problem has been split into
two parts, one of them being deeply geometrical provided one gives up a control on the other part. This
is not a peculiarity of GR. In any macroscopical approach to entropy—e.g. when dealing with Classical
Thermodynamics of gases—one has first to predict thermodynamical potentials. It can be easily argued
that there is no classical way of computing the temperature in macroscopic thermodynamics unless all
other thermodynamical potentials are already known.

Similarly, the notion of temperature in GR is defined in terms of the Hawking radiation that is in
turn based on a semiclassical approximation of Quantum Mechanics on a curved background, or some
equivalent classical result about Geodesics Geometry (see [20]).

The further identifications between the temperature and other geometrical entities (surface gravity of
the horizon [3], the period of time compactification in the Euclidean sector to avoid conical singularities
and so on) are necessarily less fundamental than Hawking radiation and they basically represent a coin-
cidence. It is worthwhile to mention that such a coincidence is deeply related to the no-hair theorem: if
the status of a black-hole is described by very few parameters which in turn determine its geometrical
features, then it is trivial that any state function is necessarily a function of these few parameters (or,
equivalently, it is a function of the geometrical parameters of the black-hole). If one considers a one-
parameter family of black-hole solutions (e.g. Schwarzschild solutions) such that the horizon area can be
considered as a parameter for that family, than any physical quantity associated with those black-holes
can be trivially expressed as a function of the area of the horizon.

From a macroscopic viewpoint, the variational equation for the thermodynamic quantities of a black-
hole is (see [4], [7], [14], [21] for details)

δM = TδS + ΩδJ + baδQa (2)

where: M is the mass of the black-hole (i.e. a measure of the energetic content of the gravitational
system), T = κH/2π is its temperature (being κH the surface gravity on the horizon H), S = AH/4

is the entropy of the black-hole (being AH the area of the horizon surface), Ω is the angular velocity of
the horizon, J is the angular momentum of the black-hole while the parameters ba are the Lagrangian
multipliers for (possible) gauge charges Qa (actually baδQa = bδq + · · · where b is an electromagnetic
thermodynamical potential and q is the electric charge, and the dots represent other terms that can of
course appear depending on how liberal we decide to be in allowing other physical quantities, e.g. when
more general gauge fields are present).

Equation (2) is known as the first law of Black-Holes Thermodynamics. In it the quantities T and Ω

are assumed, in this framework, to be external parameters of the macroscopical thermodynamical theory,
which have to be obtained by means of physical considerations on the geometry and the dynamics of the
black-hole. The deformation operator δ denotes any infinitesimal variation of parameters in the space of
solutions, e.g. along a (restricted) family of arbitrarily fixed solutions (as it happens along Kerr–Newman
solutions).
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The main content of Wald’s prescription [15] was to use the first law of thermodynamics to define
S whenever all the other quantities are already known. In particular, the quantities δm, δJ , δq, . . . can
be defined via Nöther theorem as boundary (namely, asymptotic) quantities. Hence the stronger are the
tools we have to compute conservation laws the more general are the situations we are able to deal with.
In this view variational calculus has a prominent role being the natural setting for studying conservation
laws in a global and covariant way and to guide us towards their physical interpretation.

3. The Variational Setting

Here we are going to set the mathematical framework we need to define entropy in GR. In all this
Section the main reference for the formalism will be [22]. We shall omit the (sometimes long) details,
which can be found there.

The framework is suitable to deal with natural theories (namely, generally covariant field theories)
as well as with gauge-natural theories (namely, field theories with extra gauge covariance). Since we
shall be concerned with gravitational theories (with matter interactions) let us assume that fields carry
information enough to determine the geometry (more precisely a metric structure) of spacetime.

The exact nature of the dynamical (fundamental) fields, and then how exactly spacetime geometry is
encoded by them, actually depends on the context and on the framework adopted (e.g. purely metric,
Palatini metric-affine, purely affine, purely tetrad, tetrad-affine, Ashtekar’s variables, Chern–Simons
formulations, just to mention the most commonly used; see [22]).

Field configurations are parametrized by sections of a natural (or gauge-natural) bundle π : C → M ,
called the configuration bundle. The base manifold M is spacetime, while fibered coordinates (xµ, yi)

on C locally parametrize fundamental fields yi(x).
The configuration bundle is assumed to be natural which means that spacetime diffeomorphisms act

on configuration fields. Gauge natural refers to a more general situation in which the wider group Aut(P)

of principal automorphisms of a principal structure bundle P globally acts on fields. Such transforma-
tions are called gauge transformations. The gauge natural case encompasses the natural case since the
group Aut(P) canonically projects onto the group Diff(M) owing to the bundle structure of P.

The jet prolongations of the configuration bundle take care of partial derivatives of fields and play the
role of Lagrangian phase space. For any bundle C → M there is a canonical infinite chain of bundles,
the k-th of which denoted by JkC:

· · · → Jk+1C → JkC → · · · → J1C → C → M . (3)

A system of local coordinates of JkC is (xµ, yi, yi
µ, . . . , y

i
µ1...µk

) if (xµ, yi) denote fibered coordinates
on C. The extra coordinates (yi

µ, . . . , y
i
µ1...µk

) represent partial derivatives of fields up to order k (hence
they are symmetric in the lower indices). Any section, fibered morphism or vector field on C uniquely
and functorially (i.e. preserving compositions) induces a section, a fibered morphism or a vector field on
JkC.

A Lagrangian is a bundle morphism L : JkC → Am(M), where m ≡ dim(M) and Am(M) denotes
the bundle of m-forms over M . In terms of the fibered coordinates choosen, we locally have

L = L(xµ, yi, yi
µ, . . . , y

i
µ1...µk

) ds (4)
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where ds = dx1 ∧ dx2 ∧ . . . ∧ dxm is the canonical pointwise basis of m-forms induced by the local
coordinates xµ chosen on M .

The Lagrangian describing the dynamics is required to allow Diff(M) (Aut(P), respectively) as sym-
metries in natural (gauge-natural, respectively) theories (see also [16]). Gauge-natural theories are essen-
tial, for instance, in tetrads, Ashtekar’s variables or Chern–Simons formulations of GR, where, besides
spacetime diffeomorphisms, Lorentz, spin and SU(2) transformations are assumed to be acting on fields,
respectively, and to be Lagrangian symmetries.

Given a vertical vector field X on C, locally represented as X = δyi∂i, both the sections of C and
the Lagrangian can be dragged along its flow. One can hence define a (global) bundle morphism δL :

JkC → V ∗(JkC) ⊗ Am(M), related to the Lagrangian deformation δXL, usually defined in Physics as
follows

δXL =< δL | jkX > (5)

where < · | · > denotes the natural duality between V (JkC) and V ∗(JkC).
Inspired by Spencer cohomology [23],[24], we define a variational morphism as a global bundle

morphism A : JkC → JhE∗ ⊗ Am−n(M) where E is some vector bundle. Because of the canonical
isomorphisms V (JkC) ' JkV (C), the morphism δL turns out to be a variational morphism (with E =

V (C), h = k and n = 0).
Each variational morphism A can be globally (and almost canonically) split into two global mor-

phisms 



V : Jk+hC → Jh′E∗ ⊗ Am−n(M)

S : Jk+h−1C → Jh−1E∗ ⊗ Am−n−1(M)

(6)

(where h′ = 0 if n = 0 while h′ = h − 1 when n > 0) such that the following splitting property holds
for any section X of E

< A | jhX > = < V | jh′X > + Div < S | jh−1X > . (7)

Here Div denotes the formal divergence operator on forms, defined by

Div(f) ◦ jk+1σ = d(f ◦ jkσ) , f : JkY → A(M), σ : M → C (8)

being d(·) the exterior differential operator on forms on M , σ a section and A(M) ≡ ⊕iAi(M) denoting
the bundle of all forms over M . In the splitting (7), which is nothing but the global expression for
the usual algorithm for computing field equations out of the variation of the Lagrangian, the variational
morphismV is uniquely determined, while S depends in general on an extra choice (e.g., on a connection
used to globalise the integration by parts involved in the splitting algorithm). However, due to the low
order of the Lagrangian (k = 1 or k = 2), in all cases analysed below S will be uniquely defined (see
[25]).

The reason why we use the variational morphisms formulation is that being an algebrization of the
classical Variational Calculus, it captures the geometrical essence of it and provide the tools sufficient
to deal with global properties of field equations, dependence on boundary conditions and conservation
laws (see [16],[22],[26],[27],[28] for more details on this).
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In the cases of our interest it is A = δL, E = V (C) and we denote the two morphisms V and
S respectively as E(L) (called the Euler-Lagrange morphism) and F(L) (called the Poincaré-Cartan
morphism). Then (7) reads:

< δL | jkX > = < E(L) |X > + Div < F(L) | jk−1X > . (9)

The morphism E(L) owes its name to the fact that the Euler-Lagrange field equations are completely
encoded into it. Hence, in particular, the Poincaré-Cartan morphism is completely irrelevant for field
equations. However, we stress that despite of this, conservation laws obtained via Nöther theorem are
strongly dependent on F(L).

In both natural and gauge-natural theories there exists a vector bundle S the sections of which are in
one-to-one correspondence with infinitesimal symmetries of the Lagrangian. This is why it is called the
symmetry bundle. It is the tangent bundle TM in the case of a natural theory, while in the gauge-natural
case it is the bundle of right invariant vector fields on the structure bundle P.

A section Ξ of S is then a vector field acting on (physical) fields and hence it defines Lie derivatives
£Ξy of fields.

Let us now explore the nature of the symmetry bundle. The condition for a vector field Ξ being an
infinitesimal symmetry is the following

< δL | jk£Ξy >= Div(α(Ξ)) (10)

where α(Ξ) is some suitable variational morphism linear with respect to Ξ (e.g., in natural theories Ξ is
a spacetime vector field ξ and we have simply α(ξ) = iξL).

Equation (10) is called the covariance identity because it expresses the (gauge or general) covariance
of the Lagrangian and contains all computational details of Nöther theorem. In fact, it is easy to use the
standard variational techniques introduced above, together with the fact that Lie derivatives £Ξy take
their values in the space of vertical vector fields, to recast the covariance identity into the form of a
conservation law:

Div E(L, Ξ) = W(L, Ξ)





E(L, Ξ) =< F(L) | jk−1£Ξy > −α(Ξ)

W(L, Ξ) = − < E(L) |£Ξy >

(11)

Since the work form W clearly vanishes when computed along a solution of field equations y = σ(x),
the Nöther current E turns out to be conserved on-shell.

Since in both the natural and gauge-natural case infinitesimal symmetries Ξ are (generic) sections of
a suitable vector bundle, both E and W can be regarded as variational morphisms themselves. They can
be then split to define the so-called Bianchi term B, reduced current Ẽ and the superpotential U:





E(L, Ξ) = Ẽ(L, Ξ) + Div U(L, Ξ)

W(L, Ξ) = B(L, Ξ) + DivẼ(L, Ξ)

(12)

As a consequence of conservation laws (11) one has B = 0 even off-shell (result known as Bianchi
identities; see [16],[22],[24],[29]), Ẽ ≈ 0 (i.e., Ẽ = 0 on-shell), while U will enter into the definition of
conserved quantities (later appearing in the definition of the entropy) in a Gauss–like fashion.
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We explicitly notice that the splitting of E and W is variational in nature and then so are conserved
quantities, too. Furthermore relying on Spencer cohomology (7) this procedure is algorithmic and also
shows clearly (see (11) and (12)) that the Nöther current E is exact on–shell regardless of the spacetime
topology (weak conservation law) while the difference E− Ẽ is exact even off–shell (strong conservation
law), which is one of the most relevant results that can be obtained from the jet bundle approach to
conserved quantities.

Before defining conserved quantities, i.e. physical observables, it is necessary to proceed one step
further with the Geometric Variational Calculus machinery. Indeed, it is well known that the definitions
of conserved quantities relying on direct integration of the superpotential U lead, in gravitational theories,
to the wrong conserved quantities (e.g., the so-called anomalous factor in asymptotically flat spacetimes
[30]) and, even worse, they usually give divergent results when solutions are not asymptotically flat
([16],[31]).

We then proceed as follows. Let X be a vertical vector tangent to the space of solutions and set
([16],[27])

[δXQB](Ξ) :≡
∫

B
δXU(L, Ξ)− iξ < F(L) | jk−1X > (13)

where iξ denotes the contraction of spacetime forms along the spacetime projection ξ of the infinitesimal
symmetry Ξ, B is the (outer) boundary of a (spacelike) (m−1)–dimensional surface Σ and the evaluation
along a solution σ is understood. If (13) is integrable, then [δXQB](Ξ) is the true variation (along X)
of a true conserved quantity QB(Ξ), i.e. we could write [δXQB](Ξ) = δX [QB(Ξ)]. This definition is
supported by the following properties:
1) The integrand of (13) does not depend on the variational cohomology class [L] (i.e. the set of La-
grangians that differ from L only by a divergence term) to which the Lagrangian L belongs. This is a
rather welcome property and we shall analyse its far reaching consequences later on.
2) The quantity δXQB(Ξ) defined as in (13) satisfies (see [21],[32],[33]) the symplectic relation:

δXQ∂Σ(Ξ) =
∫

Σ
ω(X, Ξ) dm−1x (14)

where
ω(X, ξ) :≡ δX < F(L) | jk−1£Ξσ > −£ξ < F(L) | jk−1X > (15)

is the (pre)symplectic current (see [34]), while ∂Σ denotes the boundary of the (m − 1)–dimensional
region Σ. The relation (14) shows that the conserved quantity Q(Ξ), if it exists by exact integration of
δXQ(Ξ), can be truly considered as the Hamiltonian which generates the evolution of fields along the
vector field Ξ.

In any natural theory the information on the energy-momentum content inside a region bounded by
a surface B is obtained by integrating the right hand side of (13) on B with respect to generators of
diffeomorphisms, i.e. space time vector fields ξ. In particular, when ξ is timelike we refer to δXQB(ξ)

as the variation of the energy inside B and relative to the vector field ξ.
In gauge-natural theories there is a canonical way to build a connection on the structure bundle di-

rectly out of fields, so that gauge transformations can be formally split into vertical and horizontal ones
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(horizontal and vertical with respect to the dynamical connection which will be known when field equa-
tions will have been solved). In this case horizontal symmetries define energy-momentum while vertical
symmetries define the so-called gauge charges.

We think it is important at this point to make some remarks.
To obtain expression (13) a Lagrangian formulation of the theory in not strictly necessary. Indeed,

the Lagrangian formalism is just a—powerful—tool to find the field equations of a field theory; and it
is clear that all the Lagrangians belonging to the same equivalence class [L] (see item 1) above) give
rise to the same field equations. Furthermore, field equations play undoubtedly an important role in
field theories, as they select the admissible configurations and dictate their evolution, but they do not
encode the whole of the information contained in a field theory. A relevant part of this information is
in fact encoded in the field symmetries. The knowledge on how fields are dragged along infinitesimal
generators of symmetries is hence a further fundamental point.

These two sets of complementary information, field equations and symmetries, can be joined together
into a unique structure. One can in fact define the variational Lagrangian [28] as the contraction of field
equations with the Lie derivatives of the fields:

L′(j2kσ, jrΞ) :≡ − < E |£Ξy > (16)

where r is a finite integer that depends on the theory. Remembering (11) we set L′(Ξ) ≡ W. Obviously
as well as W, L′(Ξ) vanishes along solutions of L. This is a true Lagrangian and, for the information
it encodes, it is a good candidate to represent the fundamental object in terms of which one can derive
conserved quantities. In fact, being L′ a Lagrangian, it can be handled with the tools of the Calculus of
Variations in jet bundles we have introduced so far. In particular we can make use of (9) to obtain the
splitting:

< δL′(Ξ) | jaX > =< E(L′(Ξ)) |X > + Div < F(L′(Ξ)) | ja−1X >

= Div < F(L′(Ξ)) | ja−1X >
(17)

where a is a finite integer depending on the theory (for simplicity, a can be assumed to be the order
of field equations) and < E(L′(Ξ)) | X >≡ 0 since L′ is a pure divergence and therefore variationally
trivial: E(L′) = 0 (see (12) and [28]). Accordingly, since L′ is vanishing on–shell we obtain the (weak)
conservation law:

Div < F(L′(Ξ)) | ja−1X >≈ 0 . (18)

Moreover the morphism < F(L′(Ξ))) | ja−1X > depends linearly on the vector Ξ together with its
derivatives up to a finite order. Being Ξ a generic section of a well–defined vector bundle we can again
implement Spencer cohomology (7) with respect to the vector Ξ (roughly speaking, we integrate by parts
with respect to the the derivatives of vector field Ξ) and we end up with the canonical splitting:

< F(L′(Ξ)) | ja−1X >= δX Ẽ (Ξ) + DivV (X, Ξ) (19)

where Ẽ is the reduced current seen above while V(X, Ξ) agrees with the right hand side of (13) (see [28]
for the technical details).
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We feel then ourselves authorised to say that definition (13) captures the fundamental mathematical
essence of the theory we are dealing with and endows it with a direct physical interpretation. Namely,
theories that are equivalent as far as their field equations content is concernded produce conserved
quantities which are equivalent when computed along equivalent solutions. Moreover, definition (13),
being directly built out from the field equations via the variational Lagrangian L′(Ξ) turns out to be
related only with the solutions and not with the specific mathematical rule (i.e. the Lagrangian) we
choose to describe the theory. So, for example, the energy enclosed in a region surrounding a black-
hole will eventually depend, as physically expected, only on the geometry of spacetime, and not on
the dynamical variables (metric, tetrad, connection, . . . ) nor on the Lagrangians (Hilbert, tetrad–affine,
Chern–Simons, . . . ) we initially chose to describe it.

These techniques for conservation laws have been shown to capture the covariant and global aspects
of the physical conserved quantities which enter into the first law of thermodynamics (2). The Kerr–
Newman, BTZ and Taub-bolt solutions, as well as Yang-Mills theories, spinor physics, Chern-Simons
and Lovelock theories, have been directly and succesfully treated covering many different examples with
different boundary conditions.

Coming at last back to entropy in GR, it has been shown that in gravitational theories which admit a
solution with horizon a symmetry generator Ξ can be found so that its associated δXQB(Ξ) is δXm −
ΩδXJ−bδXq. Hence, using (2), it is clear that δXQB(Ξ) defines directly TδXS, which can be integrated
for S once the temperature T is known. In this way we may recover the expected entropy not only for
asymptotically flat black-holes (Kerr–Newman; [16]), but also for asymptotically anti–de Sitter black-
holes ([17],[18],[31],[35]), asymptotically de Sitter black-holes (Schwarzschild–de Sitter solution; [21]),
asymptotically locally flat and asymptotically locally anti–de Sitter solutions (Taub-bolt, [19],[36]) and,
recently, also isolated ([37]) and causal ([21]) horizons.

Let us remark that whenever Ξ is a Killing vector field (a condition which is obviously encountered
in stationary spacetimes) from formulae (14) and (15) it directly follows that

δXQ∂Σ(Ξ) = 0 . (20)

As a consequence entropy is defined as a homological quantity which can (but not need) be defined on
horizons (any surface B homologue to an horizon cross section H , i.e. B−H = ∂Σ, may play the same
role). This property drastically reduces the requirement on existence and type of horizons. We lastly
observe that the general case of isolated horizons, where a global Killing vector does not exist, can be
handled inside the same framework developed so far (see [37]).

4. Boundary Conditions and Reference Backgrounds in General Relativity

An obvious observation is that by means of definition (13) we are in general able to produce just the
variation of a conserved quantity, not the conserved quantity itself.

This in principle can be done only by fixing a boundary condition. There are many equivalent but
different ways (Variational Calculus is essential to prove the equivalence of such different prescriptions)
to do so.
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One of them is to forgo the covariance and define the so-called energy-momentum pseudo-tensors
([38]). A choice which is definitely not much in the spirit of GR.

A more elegant solution would be that of introducing a reference background in the variational
principle (of course some sort of flat background is also used in the definition of asymptotically flat
solutions, which can be seen as deformations of a Minkowski flat spacetime). It is in fact known
([17],[22],[30],[39],[40]) that denoting

gµν ḡµν metrics
Γα

βν Γ̄α
βν connections

Rα
βµν R̄α

βµν Riemann tensors
Rµν R̄µν Ricci tensors
R = gµνRµν R̄ = ḡµνR̄µν scalar curvatures
uµ

αβ = Γµ
αβ − Γε

ε(αδµ
β) ūµ

αβ = Γ̄µ
αβ − Γ̄ε

ε(αδµ
β)

and
wµ

αβ = uµ
αβ − ūµ

αβ (21)

one can define a covariant Lagrangian depending on the two fields g and ḡ by setting:

Lgḡ :≡ (R
√

g − dµ(
√

g gαβ wµ
αβ)− R̄

√
ḡ) ds . (22)

This Lagrangian presents an advantage with respect to the Hilbert’s one (see [16], [22], [30], [39],
[41]): the superpotential ensuing from Lgḡ provides a conserved quantity which depends on both g and
ḡ and satisfactorily represents the relative energy–momentum between the two field configurations. In
this way ḡ can be fixed to be any kind of solution (e.g. Minkowski, pure de Sitter or anti-de Sitter,
Taub–NUT) in order to study solutions (e.g. Kerr–Newman, Schwarzschild–de Sitter, BTZ or Taub-bolt)
with different asymptotic behaviours (asymptotically flat, asymptotically de Sitter, asymptotically anti-
de Sitter or asymptotically locally flat, respectively).

The Lagrangian (22) can be viewed in a general scheme to deal with relative conserved quantities
(see [42]). We stress that this general scheme is aimed precisely to reproduce the variation of conserved
quantities in the form (13).

An important and “philosophical” remark. We are obviously very well aware that there is no uni-
versal consensus in current literature, especially in loop quantum gravity (see, e.g., [43]), on the use of
backgrounds. While we completely agree that backgrounds should not directly enter the description of
Physics at a fundamental level (we trust in the need of a background-free quantization scheme) we also
think that more attention should be deserved to what exactly a background is. In particular we claim
that the reference background entering (22) is completely different in nature from the background as-
sumed in standard String Theory or from the role of Minkowski background in Particle Theory. The
differences are both in the physical interpretation and in the behaviour from a variational viewpoint. In
Particle Physics, for instance, the background is endowed with a direct physical interpretation (for ex-
ample, free particles are supposed to move along its geodesics) and some of the fundamental physical
structures explicitely depend on it (e.g. the inner product of the Hilbert space of quantum states). This
kind of background is considered fixed by both variations and symmetries, in order to kill some terms
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in the conservation laws (by means of the condition £ξḡ = 0, i.e. restricting to Killing symmetries).
These extra terms need to be killed because they do not vanish on-shell, as a consequence of the fact that
backgrounds are not varied and one has less field equations than one usually would have in an uncon-
strained variational principle. Instead, in equation (22) the situation is completely different. In particular
it seems to us completely satisfactory from a physical point of view. First of all the background ḡ is not
endowed with a direct physical interpretation; free particles move along geodesics of g and both g and
ḡ are unknown until field equations are solved (so that, for example, the Hilbert structure on quantum
states cannot depend on them). Secondly g and ḡ are completely independent and, as the Lagrangian
(22) shows, they do not interact; so the choice of ḡ does not influence the dynamics of g. So, what is
the role of ḡ? More than a background (in the meaning this word suggests) it behaves like a “tare”,
accounting for the observer freedom in choosing a vacuum state with respect to which one can compute
some physical quantity (e.g. the energy). A completely satisfactory situation indeed, if one consider that
just variations of conserved quantities (e.g. energy), are endowed with a direct fundamental role, while
the absolute values of conserved quantities are observer-dependent and, as such, non-covariant!

In many ”simple” field theories the configuration bundle has a canonical section (this is what happens,
e.g., with the zero-section of a vector bundle) which can be selected as a preferred reference background.
Hence despite one could certainly look for a reference background-depending variational principle, in all
these cases one can escape it. On the contrary, when the configuration bunlde has no canonical sections
(e.g. when it is C = Lor(M), the bundle of Lorentzian metrics over M ) such ambiguities have to be dealt
with explicitly.

In (22) the fields g and ḡ are treated on exactly an equal footing: they play the same role in the
variational game. Variations are not required to fix ḡ, nor symmetries are. On the contrary, symmetries
drag both g and ḡ equally. Field equations are doubled (one set for g and one set for ḡ) and then also ḡ

can be in principle chosen obeying Einstein field equations. Furthermore, as already noticed above, the
particular form of the Lagrangian (22) ensures that g and ḡ can be chosen truly independently because
they do not interact: no extra terms will in facts survive in the conservation laws once field equations for
both g and ḡ are taken into account. Hence there is no need of requiring the symmetry to be a Killing
symmetry of the dynamical field g nor of the reference background.

Let us finally notice that the superpotential U(Lgḡ, ξ) obtained from the Lagrangian (22) reproduces
the well known Regge–Teitelboim prescription (see [14]) once it is specialised to an asymptotically
flat solution and a Minkowski background, so that the variational principle (22) can be regarded as
a generalization of this fairly accepted result. Moreover, the variation δX

∫
B U(Lgḡ, ξ) reproduces the

variational formula (13) when (Dirichlet boundary conditions) the metric g approaches the background
ḡ on the integration domain B (which can or cannot coincide with spatial infinity; see [41]). In this way
we can define the quasilocal energy (the energetic content inside a bounded region of spacetime) which
is general enough to be adapted to many (if not every) situation, provided the metric and its background
are suitably chosen and matched.

As already stated in the Introduction, we have convincing arguments to believe that gravitational
systems are truly thermodynamical; and then we should be able to associate to them different kinds of
energies, such as, e.g., internal or free energy. To do so, let us look again at (13). Once we fix B in
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it, there exist many “energies”, depending both on the symmetry vector field Ξ and on the variational
vector field X . In particular Ξ (or better, its projection ξ onto the spacetime manifold M ) determines,
via its flow parameter, how the observers located on B evolve as the “time” flows. The vector field X

fixes instead the boundary conditions (e.g. à la Dirichlet or Neumann) on the dynamical fields.
Hence to each choice of the pair (ξ,X) a particular realization of a physical system is associated,

endowed then with its own “energy content”.
It was also noticed ([11],[12],[44]) that boundary conditions in GR correspond exactly to boundary

conditions of a thermodynamical ensemble and that dynamical fields conjugated to each other in a sym-
plectic sense can be also considered thermodynamically conjugated. Accordingly, different ensembles
can be realised by exchanging the fields that are kept fixed as boundary data with their respective bound-
ary conjugated fields. Under this point of view the variational vector field X turns out to be a variation
into the ensemble realised with specified boundary conditions (e.g. microcanonical, canonical or grand-
canonical ensemble), namely X fixes among the dynamical variables, which ones are the intensive and
which ones are the extensive variables.

As already noticed, the Dirichlet boundary conditions (i.e. boundary metric kept fixed) give raise
to the internal energy when using the Lagrangian (22). Moreover the Neumann boundary conditions
(consisting in keeping fixed the momenta conjugated to the boundary metric) lead ([21]) to another kind
of energy, which we call the gravitational heat, namely the TS contribution to the internal energy of the
thermodynamic system (T = temperature, S = entropy).

It is important to notice at this point that the definition of entropy, as it arises from this prescription,
depends on the vector ξ and then it is observer-dependent. Hence entropy contributions arise whenever
an obstruction exists to globally foliating spacetime into surfaces of constant time (in perfect agreement
with the perspective of [7]). In other words, entropy turns out to be closely related to the coordinate
singularities of the solution describing spacetime. Let us make some physical considerations in order to
explain this important point. For each timelike vector ξ there exists a set of (local) observers evolving
with velocity ξ and we can choose an observer-adapted system of coordinates in which the observers
themselves are at rest. In such a reference frame the metric coordinate singularities correspond to ho-
mological boundaries and, according to the homological properties owned by our definition of entropy -
which are basically inherited from the property (20) -, each boundary gives rise to its own contribution
to the total entropy. However the metric coordinate singularities correspond physically to regions of
inaccessibility for the observers (one-way membranes). Hence entropy turns out to be associated to the
impossibility for the observer to reach such regions (see [20]). Extending Beckenstein’s original idea
to a much broader context we are then induced to state that entropy measures the information content
beyond the hidden regions.

We remark that the hidden regions we are referring to not only include the standard black-hole hori-
zons but also a much wider class of singularities, such as causal horizons (e.g. cosmological or Rindler
horizons), Taub-bolt and Taub-NUT singularities.
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Conclusion and Perspectives

Due to cohomological properties the entropy defined via the first law (2) can be geometrically calcu-
lated, e.g. as an integral at space infinity; then the geometrical properties of the horizons are certainly
irrelevant. In particular there is no need for the horizon to be Killing (even less to be a bifurcate Killing
horizon!). This traditional assumption is related to the wish of reducing the entropy to be an integral
at the horizon, with the consequent need to control the limit behavior at the horizon itself, although
these features turn out to be unnecessary and produce too stringent requirements which are not justified
by phenomenology. For example, in Taub-bolt solutions the Misner string in not dressed by a “good”
horizon, although the entropy can be properly defined as a quantity at infinity. The traditional physical
quantities at singularities can be recovered by (artificially) splitting the domain of integration into the
union of a number of regions surrounding the singularities themselves.

The definition of the entropy notion in GR we described so far covers a wide number of cases, ex-
tremely different in spacetime dimension, in asymptotic behaviour or structure of singularities. It suc-
cesfully deals with Kerr–Newmann, BTZ, Taub-bolt solutions, black-holes in higher dimension. Fur-
thermore, interesting results have also been found for non-stationary solutions (even if specific examples
suffer from the lack of exact solutions which are at the same time geometrically well-defined). Hence we
consider ourselves satisfied enough by this situation, in particular by the fact that entropy is a geomet-
rical quantity the cohomological properties of which reverberate in the first laws of Thermodynamics.
We already compared our approach to Brown-York prescription and to Hamiltonian based formulations,
showing that they can be understood within our geometrical framework.

Another issue refers to a general problem with variational prescriptions for conserved quantities. Such
prescriptions depend in general on the action principle, not only on the solution. There are cases in which
a specific metric field is related to the solution of two different actions.

A simple case is when the two actions differ by boundary terms; in this case we saw that the variation
of conserved quantities defined by (13) is independent of boundary action terms. However, there are
more general cases in which different actions (i.e. with bulk differences) produce different field equations
which share common solutions, or better their solutions induce the same metric fields.

For example, because of universality properties (see [45]), it was shown that the à la Palatini actions
based on Lagrangian densities of the form Lf = f(R)

√
g (in the case of a generic analytic function

f ) produce field equations which are in vacuum equivalent to Einstein vacuum field equations with a
suitable cosmological constant.

In such situations conserved quantities depend on the Lagrangian more than on the solutions; there is
no a priori reason to believe that the two variational principles produce the same conserved quantities.
We stress that different conserved quantities would produce different entropies. In the specific case of
f(R) theories mentioned above it was shown (see [50]) that, despite the superpotentials actually differ,
their difference vanishes on-shell hence producing the same conserved quantities and the same entropy.

Further investigations will be devoted to cope with this problem in general. It would be interesting to
prove a priori that different equivalent Lagrangians produce the same conserved quantities (or to classify
the cases in which this does not happen). These results would enforce the euristic idea that conserved
quantities are a characteristic of the solution more than of the variational principle (or at least we would
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know when the euristic expectation fails).
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