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Abstract: We present in this paper two new versions of Rayleigh-Schrödinger (RS)

and the Brillouin-Wigner (BW) state-specific multi-reference perturbative theories (SS-

MRPT) which stem from our state-specific multi-reference coupled-cluster formalism

(SS-MRCC), developed with a complete active space (CAS). They are manifestly size-

extensive and are designed to avoid intruders. The combining coefficients cµ for the

model functions φµ are completely relaxed and are obtained by diagonalizing an effec-

tive operator in the model space, one root of which is the target eigenvalue of interest.

By invoking suitable partitioning of the hamiltonian, very convenient perturbative ver-

sions of the formalism in both the RS and the BW forms are developed for the second

order energy. The unperturbed hamiltonians for these theories can be chosen to be of

both Mφller-Plesset (MP) and Epstein-Nesbet (EN) type. However, we choose the cor-

responding Fock operator fµ for each model function φµ, whose diagonal elements are

used to define the unperturbed hamiltonian in the MP partition. In the EN partition,

we additionally include all the diagonal direct and exchange ladders. Our SS-MRPT

thus utilizes a multi-partitioning strategy. Illustrative numerical applications are pre-

sented for potential energy surfaces (PES) of the ground (1Σ+) and the first delta (1∆)

states of CH+ which possess pronounced multi-reference character. Comparison of the

results with the corresponding full CI values indicates the efficacy of our formalisms.
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1 Introduction

One of the prime challenges in quantum chemistry lies in the development of formally rigorous

models capable of reliable computations of potential energy surfaces (PES) of systems of arbitrary

complexity and generality. Despite impressive methodological developments in correlated theories

of electronic structure over the past two decades, major bottlenecks such as proper maintenance

of size-consistency over a wide range of geometries, keeping the wavefunction of consistently good

quality in the regions of real and/or avoided curve-crossings and formulating general strategies

to bypass intruders have posed rather non-trivial theoretical problems. The effective hamiltonian

based multi-reference (MR) methods [1–4] are often unsuitable for PES studies due to the perennial

intruder state problem [5], though the intruders could be bypassed to a large extent at certain

specific geometries by utilizing an incomplete model spaces (IMS) [6–8]. An inherently superior

approach seems to be to work with a multi-determinantal reference space and to correlate only

the target state of interest. Such strategies are generally referred to as the state-specific (SS) MR

methods in the modern quantum chemical parlance.

Recently we have developed a rigorously size-consistent state-specific multi-reference coupled-

cluster (SS-MRCC) theory [9, 10] involving a CAS, which is designed to bypass the intruder

problem. The pilot numerical applications of the formalism gave very encouraging results for elec-

tronic states possessing varying degrees of quasi-degeneracy and avoided crossings [10, 11], which

indicate its efficacy and viability. We also demonstrated that the SS-MRCC theory is quite rich in

its structure in that it embodies in a natural manner some underlying Rayleigh-Schrödinger (RS)

and Brillouin-Wigner (BW) type perturbation expansion with robust denominators, depending

on the expansion strategy. The perturbative realizations of the formalism are quite worthwhile to

explore, since any possible low order perturbation expansion – which captures such essence of the

parent SS-MRCC as size-consistency and avoidance of intruders without sacrificing its accuracy

significantly – will turn out to be potentially attractive in terms of the applicability to bigger

systems. We have in fact recently suggested a specific way to generate such state-specific multi-

reference perturbation theories (SS-MRPT) [12] and demonstrated their usefulness with some

preliminary applications [11, 13]. This mode of formulation has the limitation that only a very

specific partitioning of the hamiltonian H could be supported for a consistent development. In

this paper, we present an alternative viewpoint, which lends flexibility in the sense that several

different partitionings can be used in formulating the perturbative versions. The objective of the

this paper is to provide an account of the various facets of both the RS and BW versions of the

new SS-MRPT, with several different partitionings of the hamiltonian. We also present numeri-

cal applications to typical multi-reference electronic states studied individually in a state-specific

manner. We will discuss the first order RS and BW perturbative expansions of the wavefunction of
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our SS-MRCC formalism, which provides the second order energy. As a significant departure from

the currently popular perturbative methods starting from a CAS, such as the CASPT2 [14, 15],

our formulation is intrinsically flexible in that it is designed to handle relaxed coefficients of the

reference function. However, we can allow frozen coefficients as well in our formalism, and this

feature can be utilized to explore the extent of accuracy gained if the coefficients are relaxed.

Successful implementation of all the traditional multi-reference many-body perturbation the-

ories (MR-MBPT), which were developed within the effective hamiltonian framework [1], was

always seriously affected due to the presence of the perennial intruder problem [5, 16]. The

zeroth-order energies appearing in the denominator of RS resolvent makes it explicit how the

series becomes ill-conditioned if any of the virtual functions become quasi-degenerate in energy

with any of the model functions. This drawback of the RS version of MR-MBPT is apparently

not present in the corresponding BW type of resolvent, since the perturbed total energies figure

in the denominators. Unfortunately, this has the disadvantage that a straightforward formulation

leads to manifestly size-inextensive formalism, even for a CAS. The more sophisticated BW ver-

sion developed by Bloch and Horowitz [17] scales somewhat better in the sense that it generates

the shift of energy relative to the closed shell core, so that the error scales as number of valence

occupancies. It is nevertheless still not fully extensive. The need to formulate comprehensive

perturbative formalisms which can generate a size-consistent expansion of energy yet avoiding

intruders was thus very much warranted.

Two fruitful avenues have been explored in recent times towards the realization of this goal.

In one, an attempt is made to develop theories based on an (N × N) MR model space, but

instead of targeting all the N eigenstates only a subset of them is targeted. The model space

is partitioned into two subspaces, primary and secondary, where the latter may have energetic

overlap with the virtual space. The idea is to define a pseudo-wave operator which acts on the

entire model space, but generates exact states which are equal in number to the dimension of

the primary model subspace and are dominated by the model functions spanning this subspace.

This approach was advocated by Kirtman [18], but it was developed fully by Malrieu et al. [19]

in the perturbative context, who termed this the intermediate hamiltonian (IH) approach. There

have been important recent developments by Hoffmann [20], and Khait and Hoffmann [21] in

this context. Coupled-cluster based IH formalisms [22–24], which are size-extensive, were also

developed.

Another approach to circumvent the difficulty of intruders is to abandon the idea of partitioning

of the CAS into primary and secondary subspaces, and define a wave operator which acts on just

one reference function, which is a linear combination of all the functions of the CAS. The emphasis

in this approach is to develop a state-specific theory, targeting only one state, rather than several

states at the same time of the IH approach. An important advantage then is that it is not necessary
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for the exact function to be dominated by only certain model functions (which are taken to form

the primary subspace in the IH methods).

There are various pro and contra issues for the different SS-MR based perturbation theories,

which shape their numerical demands. There have been two distinct courses of development of

the SS-MR theories. In one, to be hereafter called the frozen coefficients variety, the coefficients

of the model functions forming the initial reference function are fixed by a prior diagonalization in

the model space, and they are not revised or updated as a consequence of mixing with the virtual

functions [14, 15, 25–29]. In another approach, the combining coefficients are iteratively updated,

which lends an intrinsic accuracy to the perturbed functions [12, 13, 19–21, 30]. We will henceforth

call them as belonging to the relaxed coefficients variety.

We discuss the MRPTs with frozen coefficients first. There are usually two ways in which

the virtual functions are handled. One way is to generate mutually non-orthogonal and lin-

early dependent set of functions obtained by the action of elementary excitation operators on the

CAS-function, and selecting the linearly independent set by a Gram-Schmidt singular value de-

composition procedure [14, 15, 25]. The hamiltonian matrix in the space of the virtual functions in

this approach is non-diagonal, thus necessitating an implicit iterative inversion of a large matrix.

Moreover, it requires the storage of upto four-body active densities, thus making it computation-

ally expensive. There is, however, an intrinsic accuracy in the approach, since the projection

manifold in the virtual space uses very elaborate multi-configuration functions.

There are also some hybrid solution strategies like the one suggested by Werner [31], where the

double excitations are chosen as the composite functions as obtained by the first procedure, while

the single excitations are taken as the singly excited determinants or CSF’s with respect to the

model determinants.

It should be mentioned here that there are non-perturbative state-specific methods as well with

frozen coefficients [9, 32], which are explicitly size-extensive.

In the other strategy [26, 27], the virtual functions used for projections are simple determinants

or CSFs with given orbital occupancies, which results in the corresponding matrix in the space

of virtual functions being diagonal. This lends a simpler structure to the working equations.

In both these approaches, the functions used for projections to the virtual manifold are linearly

independent.

The various CAS-based perturbative methods can also differ in their choice of unperturbed

hamiltonian H0, apart from the mode of representing the reference function relaxed or unrelaxed

with respect to the coefficients. The original CASPT [14] was formulated with the generalized

Fock operator as the unperturbed hamiltonian. This and the related formalisms [15, 25–29] may be

viewed as generalizations of MP perturbation theory to a CAS reference function. To take a better

account of the orbital occupancy in non-singlet cases, a portion of the two-body terms ofH has also
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been added to H0, with varied degrees of success [29]. Obviously, the most elaborate choice of such

H0 would be to include the full two body active part of interaction, in addition to the standard

generalized spin-average Fock operator [28]. Dyall [28] considered the entire active portion of

H in H0 in his development of CASPT. Some recent formulations [33] of effective hamiltonian

perturbation theories have also used a multi-partitioning MP approach in the traditional effective

hamiltonian framework. Also Heully et al. [34, 35] discussed a partitioning of the hamiltonian

where the size-consistency is imposed as an external constraint.

The various CASPT2 versions described above by and large avoids the size-consistency error,

but not rigorously so. But, in order to reduce the artifacts stemming from the lack of relaxation of

the coefficients, they advocate the use of rather large CAS, which may be fraught with intruders.

For a critique along this line, see ref. [33]. As we will show in Sec.2.2, our SS-MRPT uses the best

traits of the multi-partitioning strategy as well as of a rigorously size-extensive formulation.

We now discuss the SS-MR approaches with relaxed coefficients. There are both non-perturbative

and perturbative developments. There have been three formalisms [9, 10, 30, 36], based on this

idea. One of them is our SS-MRCC formalism [9, 10] on which the present SS-MRPT [12, 13] are

based. There are two other SS formalisms [30, 36] which bear kinship with our SS-MRCC formu-

lation. A common aspect of all these formalisms is the use of the same virtual determinant (or,

the CSFs) to generate equations for excitation amplitudes for operators exciting from each model

functions. This leads to redundancy of the excitation amplitudes. Malrieu and his group devel-

oped their SS-MR theories using a dressed-CI approach [30]. They eliminated the redundancy of

their working equation in favor of some fractional parentage coefficients, and suggested expressions

for determining them. The method is size-consistent with respect to fragment separations using

localized orbitals. Our SS-MRCC theory, however, is invariant with respect to rotations with the

active and virtual orbitals separately, and thus is size-consistent in either localized or delocalised

orbitals. A SS Brillouin-Wigner type of MRCC approach, proposed by Hubač and co-workers [36],

has a simpler structure compared to the more elaborate expression of our SS-MRCC theory. It

is however not rigorously size-extensive or size-consistent. Hubač and co-workers [37], in a later

development, sought to correct for the size-inextensivity by reverting to a RS type formulation.

It was observed that the intruders would not show up if the inextensivity correction is incorpo-

rated by one iteration only. However, in general, this procedure does not ensure the removal of

all the inextensive terms. Multiple iterations or the converged RS type of results will, however,

unfortunately bring back the problem of potential intruders.

Since our SS-MRPT formalism is based on the relaxed coefficients approach, it might appear

that this will involve very extensive computations because of the redundancy of the excitation

amplitudes. As we will discuss in Sec.2.2, the additional effort due to redundancy can be largely

minimized by an appropriate organization of the solution strategy.
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2 Evolution of the RS and the BW state-specific perturbation theories from SS-

MRCC theory with relaxed coefficients

2.1 Preliminaries

We begin this section with a very brief summary of the essential ingredients of the SS-MRCC

formalism. This will form the starting point for the perturbative approximations to follow. We

write the reference function |ψ0〉 as a combination of the reference determinants |φµ〉 spanning the

CAS:

|ψ0〉 =
∑
µ

|φµ〉cµ (1)

The exact function |ψ〉 is written as a cluster expansion involving cluster operators T µ exciting

from corresponding |φµ〉’s:
|ψ〉 =

∑
µ

exp(T µ)|φµ〉cµ (2)

|ψ〉 is taken to satisfy the Schrödinger equation with the eigenvalue E :

H|ψ〉 = H
∑
µ

exp(T µ)|φµ〉cµ = E|ψ〉 (3)

Each T µ excites to all the virtual functions from φµ via the various n hole – n particle excitations,

where the holes and particles are defined with respect to each φµ. Such a cluster expansion Ansatz

was first used by Jeziorski and Monkhorst in the context of the effective hamiltonian based state-

universal multi-reference coupled-cluster (SU-MRCC) theory [2] and has later been exploited in

the state-specific formulations too [9, 10, 36]. Since each φµ has different sets of active orbitals,

any specific core-to-particle excitation would lead to a different virtual determinant from each

φµ. This is, however, not so in general for excitations involving active orbitals. Thus, we would

encounter redundancy of the cluster operators involving active orbitals. To determine all of them,

we have to invoke suitable sufficiency conditions. One may imagine that sufficiency conditions

introduce a great degree of arbitrariness in a formalism. This is, however, not so if we want to

exploit the arbitrariness in our choice to satisfy our twin desirable goals: to ensure that intruders

are absent and to guarantee size-extensivity. It has been found that there are only two choices

which naturally lead to MRCC equations which generate manifestly connected cluster operators.

One set is just the SU-MRCC theory of Jeziorski and Monkhorst [2], which is known to encounter

intruders. The other is our SS-MRCC formalism [9, 10]. We present below, without the detailed

derivation, the form of the working equations for the cluster amplitudes:

〈χl|Hµ|φµ〉cµ +
∑
ν

〈χl| exp(−T µ) exp(T ν)|φµ〉H̃µνcν = 0 ∀ l, µ (4)
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where

Hµ = H exp(T µ) (5)

and

H̃µν = 〈φµ|Hν |φν〉 (6)

The model space coefficients {cµ} are determined from

∑
ν

H̃µνcν = Ecµ (7)

The sets {Tµ} and {cµ} are coupled through eq. (4) and eq. (7). Solving these coupled set of

equation gives us the cluster amplitudes and the converged coefficients from the diagonalization.

For the detailed derivation and the proof of the extensivity of the SS-MRCC theory we refer

to our recent papers [9, 10]. What is pertinent for us here is the identification of one of the

essential arguments leading to extensivity, since this will form the guideline of the perturbative

approximations to follow. Dividing eq. (4) through by cµ, we have

〈χl|Hµ|φµ〉 +
∑
ν

〈χl| exp(−T µ) exp(T ν)|φµ〉H̃µνcν/cµ = 0 ∀ l, µ (8)

The first term of eq. (8) above is manifestly extensive, while the connectivity property of the

second term requires a careful treatment, since this involves a product of two matrix-elements and

may not have terms with common orbital labels in the two factors. Using the Baker-Campbell-

Hausdorff formula for the product of exponentials, the second term can be written as

∑
ν

〈χl| exp(−T µ) exp(T ν)|φµ〉H̃µνcν/cµ =
∑
ν

〈χl|(T ν − T µ +
1

2
[T ν , T µ]

+
1

12
[[T ν , T µ] , T µ] − 1

12
[[T ν , T µ] , T ν ] + · · ·)|φµ〉H̃µνcν/cµ (9)

Now, the second factor in eq. (9), H̃µνcν/cµ is labeled by all the active orbitals which distinguish

the determinants φµ and φν , and the first factor 〈χl|(T ν − T µ + 1
2
[T ν , T µ] + 1

12
[[T ν , T µ] , T µ] −

1
12

[[T ν , T µ] , T ν ] + · · ·)|φµ〉 should contain terms with some of these distinguishing active orbitals

in H̃µνcν/cµ for extensivity. While it is straightforward to show that the commutators and the

multiple commutators generated by the Baker-Campbell-Hausdorff formula do have active orbital

labels with this property, the individual terms linear in T µ and T ν do not. In fact there are

excitation operators involving orbitals different from those active orbitals distinguishing φµ and

φν . It was proved by us [9, 10] that the term 〈χl|(T ν −T µ)|φµ〉 containing the difference (T ν −T µ)

is, however, labeled by some or all the active orbitals distinguishing φµ and φν , and thus the

two factors in the term in eq. (9) above have indeed some orbital labels in common. For any

approximation of the SS-MRCC equations preserving the extensivity, it is mandatory to treat all
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the cluster amplitudes on an equal footing; otherwise the difference (T ν − T µ) will not be labeled

by the active orbitals distinguishing φµ and φν . This aspect forms one guiding principle in our

development of the perturbative approximations.

2.2 State-specific multi-reference perturbation theories: SS-MRPT

We wish to view the low order perturbative versions as a suite of quasi-linearized approximations

of the SS-MRCC theory. Towards this end, we rewrite the leading terms of the cluster amplitude

finding equations, eq. (4), of the parent SS-MRCC theory in the following form :

[〈χl|H|φµ〉] cµ +

[
(
∑
m

〈χl|H|χm〉 − 〈φµ|H|φµ〉δlm)〈χm|T µ|φµ〉
]
cµ

−
[∑

ν

〈χl|T µ|φµ〉H̃µν

]
cν +

[∑
ν

〈χl|T ν |φµ〉H̃µν

]
cν = 0 ∀ l, µ (10)

The four distinct terms in the above expression are separately shown under four brackets. The

first term essentially corresponds to the coupling of a virtual function to a model function, and

is akin to the numerator in a simple perturbation theory. The second term is a commutator of

T µ and H, and with H0 approximating H contributes an RS-like denominator of a traditional

effective hamiltonian-based theory. The third and the fourth terms together perform two inter-

related but distinct functions: (a) to convert the usual RS-like denominators into one containing

the actual state energies, to bypass intruders – as befitting a state-specific theory, and (b) to

supply counter-terms guaranteeing size-extensivity of the theory. The third term, in fact, supplies

the term containing the state-energy, as shown below, while the fourth term, which couples the

different model functions via the dressed hamiltonian H̃µν , containing T ν , is, in conjunction with

the third term, responsible to maintain size-extensivity.

Let us first briefly review our former perturbative formulations. This will help not only in

emphasizing certain theoretical issues which any perturbative approximant has to satisfy, but also

will serve to indicate where a more flexible approach can be taken. We recall at this point the

observation noted earlier (after eq. (9)) that the term 〈χl|(T ν − T µ)|φµ〉H̃µνcν/cµ is connected

provided T ν and T µ are treated on the same footing. This aspect has a direct bearing on the

structure of the RS and BW form of the working equations in any size-extensive perturbative

formalism, viz. the last two terms in eq. (10) should be treated in the same approximation.

In the original formulation, we treated all the four terms consistently in the same partitioning

scheme. This led to a rather inflexible approach, since this necessarily constrained us to use only a

very specific partitioning strategy. Since it is natural to have the unperturbed state-energy E0 ap-

pear in the denominator in the RS version, we approximated H̃µν by Hµν in
∑

ν〈χl|T µ(1)|φµ〉H̃µνcν ,
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since this leads to :

∑
ν

〈χl|T µ(1)|φµ〉Hµνcν = E0〈χl|T µ(1)|φµ〉cµ (11)

To treat the term containing 〈χl|T ν(1)|φµ〉 on the same footing, it should thus appear multiplied by

Hµνcν in the RS version. In a consistent perturbative approach, each term should be of first order

in a first order RS formulation. Thus Hµν in the last two terms in eq. (10) should be interpreted

as H0µν . The partitioning of H in this approach is thus dictated by the necessity of keeping the

full active portion of the hamiltonian in H0. For the definition of H0 for the virtual functions, it is

natural to choose it as in the traditional EN partition. We thus advocated the following strategy

in our earlier formulation: we partitioned the hamiltonian, H, into an unperturbed part, H0, and

a perturbation, V . We used a multi-partition strategy in that the unperturbed H0µ was chosen as

dependent on the φµ it acts upon, analogous to what was advocated in [33]. H0 is a sum of 〈H〉µ,

the diagonal part of the Fock operator, fµ, with respect to φµ as vacuum, when there is at least

one inactive orbital, the whole active block of fµ, plus all the ladder operators of the two-body

term which contains at least one inactive orbital and the entire active portion of the two-body

term. Though this resembles the choice of Dyall [28] in the context of CASPT2, it is appropriately

generalized in the context of multi-partitioning.

The eq. (10) was expanded in orders of perturbation to systematically generate the proper RS

and BW versions of the perturbative expansion. While the RS version used E as a power series

expansion, in the BW the E was kept unexpanded. We expanded each cluster operator T µ that

appear in the above equation as a power series in V . The same approximations were invoked

while computing the third and the fourth terms. We should note here that H0 in this formulation

is non-diagonal in the active orbitals, which leads to coupling of various amplitudes of T µ in the

second term of eq. (10)

Instead of a strict perturbative analysis of all the four terms in the quasi linearized SS-MRCC

theory, we want now to treat the third and the fourth terms of eq. (10) as something to be

computed independently of the perturbative order. To motivate towards further development, we

rewrite the third term explicitly in terms of the ‘state-energy’ E :

[〈χl|H|φµ〉]cµ + [(
∑
m

〈χl|H|χm〉 − 〈φµ|H|φµ〉δlm)〈χm|T µ|φµ〉]cµ
−[E〈χl|T µ|φµ〉]cµ + [

∑
ν

〈χl|T ν |φµ〉H̃µν ]cν = 0 ∀ l, µ (12)

In the above expression, we treat E as dependent on our choice of H̃µν , depending on the RS

or BW mode of formulation, but not on a specific partitioning strategy. We choose H̃µν simply

as Hµν for the RS version, or as the second order effective pseudo-operator, H̃(2)
µν for the BW
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version. The partitioning of H affects only the terms 〈χl|Hµ|φν〉 and 〈χl|[Hµ, Tµ]|φν〉. Since the

partitioning of H and the treatment of the size-extensivity correction term are independent now,

we can choose H0 to be even a one-particle operator, reminiscent of a truly MP theory. We can

also envision using an EN type of partition for H. In both the choices, H0 is a diagonal operator,

and this lends a simpler structure to our new perturbation theory. Expanding the first two terms

of eq. (12) in orders of perturbation, and retaining only the terms of the first order, we have

[〈χl|Vµ|φµ〉]cµ + [〈χl|[H0µ, Tµ]|φµ〉]cµ − [E〈χl|T µ|φµ〉]cµ + [
∑
ν

〈χl|T ν |φµ〉H̃µν ]cν = 0 ∀ l, µ (13)

In our MP partition, we choose H0µ to be a sum of the Fock operator for the function φµ. This

will correspond again to a multi-partitioning MP perturbation theory [33]. In the EN case, H0

contains in addition all the diagonal direct and exchange ladders. In this paper we will explore

the efficacy of the new multi-partitioned MP and EN type formulations only, as proposed above.

For actual applications, and to emphasize the organizational aspects of the theory, we rewrite

the working equations, eq. (12), in the following form:

tl(1)µ =
Hlµ +

∑ν �=µ
ν 〈χl|T ν(1)|φµ〉H̃µν(cν/cµ)[

E − H̃µµ

]
+

[
H0

µµ −H0
ll

] (14)

We note that the only coupling between the various T s are via the sum over ν appearing in the

numerator of eq. (14) above. There is thus no coupling between the various excitation components

in T µs, and the coupling is present with only those T νs which lead to the same excitation as by

the product of excitation operators for the specific tl(1)µ under consideration. This leads to a very

attractive computational scheme, where we consider each type of excitation involving a specific

set of orbitals, and compute all the T amplitudes for various µ with the same set of orbitals using

eq. (14). The contributions of all these T amplitudes to the effective pseudo-operator H̃ are then

computed, and a fresh set of excitations considered next. Thus, no T amplitudes need to be stored

in this formulation, and the coupling is minimal.

It is interesting to compare the working equations of MRMP [26, 27] and our SS-MRPT. Because

of the sufficiency conditions stemming from the redundancy in our formulation, the projection on

to the various virtual functions has to be considered for each model function. The minimal coupling

in eq. (14) above take care of both the redundancy and size-extensivity. The solution of these

equations require the storage of only those tµ amplitudes for various µs which are labeled by the

same spin-orbitals. In the first step of the iteration, if the couplings are ignored, we get almost the

same working equations of the MRMP theory. Since in the MRMP formulation, the denominator

for each φµ also requires a separate calculation, the extra work entailed in our theory as compared

to the MRMP theory is not significantly large. Thus, by paying some extra computational price,

we could ensure the rigorous size-extensivity of our formulation.
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As emphasized earlier, for the RS theories E = E0, corresponding to the CAS energy and

the term H̃µν is just H0µν . For the BW version E = E(2), the second-order energy obtained by

diagonalizing H̃(2)
µν . In both cases H̃(2)

µν is given by

H̃(2)
µν = Hµν +

∑
l

Hµlt
l(1)
ν (15)

The second order energy E(2) is obtained from

∑
ν

H̃(2)
µν c

(2)
ν = E(2)c(2)µ (16)

For the MP partitioning, the quantity
(
H0

µµ −H0
ll

)
would be the difference of the diagonal elements

of fµ containing the occupied and unoccupied orbitals of φµ involved in the excitation. For the

EN partition, the corresponding term will involve, in addition, the diagonal direct and exchange

ladders involving the same orbitals.

The eqs. (14), (15) and (16) are our principal working equations. It is noteworthy that in

the SS-MRPT(RS) formalism the zeroth order coefficients, c0µ’s are used to evaluate the cluster

operators in eq. (14), but the coefficients are relaxed during the computation of E(2), since this is

obtained by diagonalization via eq. (16). On the other hand, in the BW context, the coefficients

are iteratively updated.

The robustness of the energy denominators in the presence of intruders is quite manifest in

our SS-MRPT formalisms: the denominators are of the form
[
(E −H0

ll) +
(
H0

µµ − H̃µµ

)]
. The

difference
[
H0

µµ − H̃µµ

]
is usually smaller than the term [E −H0

ll]. The latter is never small as long

as the unperturbed or the perturbed energy, E , is well-separated from the energies of the virtual

functions. This holds true even if some of the H0
µµ’s are close to H0

ll. The above arguments remain

equally valid even in the case of EN partitioning. In this case, for the RS version, H0
µµ = Hµµ,

and H̃µµ = Hµµ, and the denominator takes the simple form [E0 −H0
ll]. Both the perturbation

theories are thus intruder-free, and both are explicitly size-extensive. They are also size-consistent

when we use orbitals localized on the separated fragments.

The above development has been in terms of spin-orbitals. The spin-adaptation of SS-MRCC

or SS-MRPT for states of arbitrary spins is rather non-trivial, and requires quite extensive formal

developments. We shall present the spin-adapted version in our future publications. For the CAS

involving only closed-shell singlets, however, the spin-adaptation is very simple: we replace the

spin-orbital indices by orbital indices, and assign a factor of 2 for each ‘loop’ (when the terms

are expressed diagrammatically). These types of model spaces are the ones we will use in our

applications, and will work with the spin-adapted expressions.
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3 Size-consistency of the SS-MRPT formalisms: An illustrative example

Let us now illustrate size-consistency of the formalisms by demonstrating strict separability of

the energies by considering an model problem of computing the interaction potential of two two-

electron fragments. We show this for the EN version only, although the MP version has the same

property. Let us denote the fragments as A and B. We use orbitals localized on the fragments.

The fragment A has just one active orbital, which we denote as a. The fragment B has two active

orbitals, which we denote as b1 and b2. The model space consists of φ1 = a2b21, φ2 = a2b22 in the

localized orbital representation in infinite separation of the fragments. Obviously, we choose the

fragment B to have a strong quasi-degeneracy to induce a MR character to our model. In view

of the invariance of the formalisms under the localizing transformation of the active orbitals, our

conclusions obtained from the localized representation will remain valid with delocalized orbitals

as well. There are two types of excitations: a) excitation a2 → a�2
i and b) excitations b21 → b�2

i and

b22 → b�2
i , where a�

i and b�i are the set of virtual orbitals in the fragments A and B respectively.

Among all these, let us focus on just two virtual orbitals, viz. a�, and b�1. In a), there is a pair

of amplitudes 〈a�2|t1(1)|a2〉 and 〈a�2|t2(1)|a2〉. In b), there are two amplitudes 〈b�2
1 |t1(1)|b21〉 and

〈b�2
1 |t2(1)|b22〉, but there is only one virtual function a2b�2

1 . However the sufficiency conditions allow

us to generate precisely two equations for these two amplitudes.

We consider the separated fragment asymptotics. In the RS case, the unperturbed energy E0

for the composite is obtained by diagonalizing the matrix 〈φµ|H|φν〉 in the model space. In the

separated limit, E0 = E0A
+E0B

where E0A
= 〈a2|H|a2〉 and E0B

is obtained by diagonalizing the

hamiltonian of B in the space of b21 and b22. For excitations to a�2b21 out of φ1, the lowest order

equation is

〈a�2|H|a2〉cB1 + [〈a�2|H|a�2〉 − E0A
]〈a�2|t1(1)|a2〉cB1 − 〈a�2|t1(1)|a2〉〈b21|H|b22〉cB2

+〈a�2|t2(1)|a2〉〈b21|H|b22〉cB2 = 0 (17)

where we have explicitly used the properties of our H0. For the excitation a2 → a�2 from φ2, we

likewise have

〈a�2|H|a2〉cB2 + [〈a�2|H|a�2〉 − E0A
]〈a�2|t2(1)|a2〉cB2 − 〈a�2|t2(1)|a2〉〈b22|H|b21〉cB1

+〈a�2|t1(1)|a2〉〈b22|H|b21〉cB1 = 0 (18)

This leads to the solutions

〈a�2|t1(1)|a2〉 =
〈a�2|H|a2〉

(E0A
− 〈a�2|H|a�2〉) (19)

〈a�2|t2(1)|a2〉 =
〈a�2|H|a2〉

(E0A
− 〈a�2|H|a�2〉) (20)



Int. J. Mol. Sci. 2002, 3 745

and they are equal, as they should be, since the other fragment is far apart.

Now let us consider the situation b). In this case we have a redundancy, corresponding to the

excitation to a virtual on B, viz. b�2
1 . For this, we have the following sufficiency condition for the

excitation from b21

〈b�2
1 |H|b21〉cB1 + [〈b�2

1 |H|b�2
1 〉 − 〈b21|H|b21〉]〈b�2

1 |t1(1)|b21〉cB1
−〈b�2

1 |t1(1)|b21〉〈b21|H|b22〉cB2 = 0 (21)

leading to

〈b�2
1 |t1(1)|b21〉 =

〈b�2
1 |H|b21〉

(E0B
− 〈b�2

1 |H|b�2
1 〉) (22)

and similarly for the excitation from b22

〈b�2
1 |t2(1)|b22〉 =

〈b�2
1 |H|b22〉

(E0B
− 〈b�2

1 |H|b�2
1 〉) (23)

This ensures separability of the total energy E as E = EA +EB. There is an analogous situation

for the BW case, with the corresponding fragment amplitudes emerging in the separated limit.

The denominators in this case, however, have perturbed energies E(2) for both composites and the

fragments. The composite perturbative energies are additively separable into fragment energies

in the asymptotic limit, since the pseudo-effective operator is an extensive operator.

We conclude this section by an analysis of a perturbative formulation of Heully et al. [35] where

they attempted to correct for the size-inextensivity of a denominator that would appear in a naive

state-specific perturbation theory. Starting with the second-order energy expression

H̃(2)
νµ =

∑
l

HνlHlµ

E0 −Hll

(24)

the corresponding cluster-amplitude tlµ in eq. (24) given by

tl(1)µ =
Hlµ

E0 −Hll

(25)

The expression of H̃(2)
νµ above will not separate correctly into non-interacting fragments A and B.

Denoting the set of model functions on fragments A and B as {φµA
} and {φνB

} the CAS functions

for the composite will be spanned by {A[φµA
φνB

]}. The CAS energy E0 separates correctly into

fragments E0A
and E0B

in the non-interacting limit. E0A
and E0B

are respectively obtained by

diagonalizing H in the space of functions {φµA
} and {φνB

}. The coefficients cµAνB
of the composite

go over to the products cµA
cνB

in the non-interacting limit. In this limit, where the fragment A
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is excited from µA → lA and the other fragment B remaining unexcited in νB it is easy to show

that the corresponding T amplitude goes over to

tlµ → tlAνB
µAνB

=
[HA]lAµA

E0A
+ E0B

−HlAlA −HνBνB

(26)

For a size-extensive theory this T amplitude should in the limit behave just as tlAµA
. This is not

reached in eq. (26) above because of the B-dependent terms in the denominator. Heully et al.

argued that one should replace the last term in the denominator by E0B
to effect the cancellation

and concluded that the form for tlµ which ensures this is given by

tl(1)µ =
Hlµ

E0 −Hll − ∑′
ν �=µHµν(

cν

cµ
)

(27)

where the prime indicates summation over only those φν ’s for which the excitation µ → l acting

on φν is non-zero. In fact, in the non-interacting limit the φν ’s for which the excitations tlAµA
are

non-zero, are the functions φµAλB
with λB �= νB. In that case,

tlµ → tlAνB
µAνB

=
[HA]lAµA

E0A
+ E0B

−HlAlA −HνBνB
− ∑

λB �=νB
HµAνB ,µAλB

(
cµAλB

cµAνB
)

≡ [HA]lAµA

E0A
+ E0B

−HlAlA −HνBνB
− ∑

λB �=νB
HνBλB

(
cλB

cνB
)

(28)

Using the relation

HνBνB
+

∑
λB �=νB

HνBλB
(cλB

/cνB
) ≡ ∑

λB

HνBλB
(cλB

/cνB
) = E0B

(29)

we have

tlµ → tlAνB
µAνB

=
[HA]lAµA

E0A
−HlAlA

≡ tlAµA
(30)

as it should be. Thus Heully et al. advocated the form eq. (27) as the proper size-extensive

expression for the cluster amplitudes.

In order to show the kinship of this theory with ours, we rewrite our RS expression, viz. eq. (14),

with E = E0, in the following manner:

tl(1)µ =
Hlµ

E0 −Hll − ∑
ν �=µ

〈χl|T ν(1)|φµ〉Hµνcν

〈χl|T µ(1)|φµ〉cµ

(31)

For the same excitation µAνB → lAνB, our expression reduces to

tlµ → tlAνB
µAνB

=
[HA]lAµA

E0A
+ E0B

−HlAlA −HνBνB
−X (32)
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where X is given by

X =
∑

λB �=νB

〈χlAφνB
|T (µAλB)|φµAνB

〉HνBλB
cλB

〈χlAφνB
|T (µAνB)|φµAνb

〉cνB

(33)

This differs from the expression
∑

λB �=νB
HνBλB

(
cλB

cνB
) appearing in eq. (26) by the various ratios

〈χlA
φνB

|T (µAλB)|φµAνB
〉

〈χlA
φνB

|T (µAνB)|φµAνb
〉 . In the non-interacting limit, the extensivity of our cluster amplitudes implies

that all the cluster amplitudes involving µA → lA with the fragment B unexcited are equal to

tlAµA
independent of νB: X =

∑
λB �=νB

HνBλB
(

cλB

cνB
) and the expression obtained by Heully et al.

coincides with that of ours in this limit.

In the interacting situation, however, it is not physically sensible to assume that they would

remain equal, and in fact, our theory would determine them self-consistently from the coupled set

of perturbative equations. In contrast Heully et al. would still continue to treat these amplitudes

equal even in the presence of interactions, which implies that their treatment amounts to the

use of “anonymous parentage” approximation [38], where one equates the values of the cluster

amplitudes inducing the same excitation irrespective of φµ’s.

4 Applications

In our numerical applications we will consider a portion of the potential energy surface (PES) of

the ground 1Σ+ and an excited 1∆ states of CH+. They possess pronounced MR character and

thus warrant an MR description to capture the non-dynamical correlation effect.

We use the RS and BW based SS-MRPT in both the MP and EN partitionings to study

the PES of these states. The performance of our SS-MRPT using these partitionings have been

assessed and compared with the corresponding results of the SS-MRCC theory, in the singles-

doubles truncation scheme, and also the FCI values using the same basis, given in the paper of

Krylov et al. [39] as the benchmark. The basis set comprises of the standard Dunning DZP basis

functions [40] augmented with diffuse s and p functions on carbon and one diffuse s function on

the hydrogen.

CH+ has a ground state electronic configuration of 1σ22σ23σ2 and a large non-dynamical cor-

relation contribution originating from the 1σ22σ21π2
x and 1σ22σ21π2

y configurations, Z-axis being

considered as the molecular axis. Due to symmetry reasons, the (3×3) model space spanned by

these configurations is complete. Moreover, all the functions in the CAS are closed-shell singlets,

allowing the use of our spin-adapted versions of the SS theories. The importance of the con-

figurations 1σ22σ21π2
x and 1σ22σ21π2

y steadily increases with the increase in the C–H distance,

and the importance of the virtual configurations arising out of single and double excitations from

1σ22σ23σ2 involving the low-lying σ� and π� orbitals becomes prominent. Our model space thus

becomes somewhat inferior for large C–H separation, but we nevertheless use this model space to
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have only closed-shell configurations in our CAS. The 1∆ state is dominated by the configurations

1σ22σ21π2
x and 1σ22σ21π2

y , and our model space is quite adequate for its description.

We have employed the CAS-SCF orbitals for the lowest root of the (3×3) CAS for our treatment

of the ground state 1Σ+, whereas for the first state 1∆ – and excited state, we have used the CAS

orbitals for the (2×2) CAS spanned by the two configurations 1σ22σ21π2
x and 1σ22σ21π2

y as our

reference functions. The CAS spaces were kept the same throughout the PES for both the states.

We have displayed in Figs.1 and 2 the PES for the 1Σ+ state and the 1∆ state respectively,

obtained with both MP and EN partitioning schemes using RS as well as BW versions of the

new SS-MRPT, which we refer to as MP-SS-MRPT(RS) and MP-SS-MRPT(BW), and EN-SS-

MRPT(RS) and EN-SS-MRPT(BW) respectively, for the two distinct partitioning schemes. For

assessing the performance, the corresponding FCI results [39] with the same basis [40] have also

been shown. Results from the parent SS-MRCC theory are also displayed to indicate the extent

of correlation captured by its perturbative counterparts. We have also shown the results of the

MCQDPT2 theory of Nakano [27] using the same CAS, and VOO-CCD values of Krylov et al. for

both the ground as well as the 1∆ state [39]. From the figures one could easily discern that our

SS-MRPT theories, both RS and BW, using both MP and the EN perform very well. The EN

partition works better for both RS and BW versions. The performance of the RS and BW methods

is comparable with any given partition. For the ground state, the quality of the perturbative

results go down in the large C–H distances, since here the (3×3) model space itself is not entirely

adequate. We emphasize that this is no reflection of the limitation of our formalism – only an

inadequacy of our choice of the model space in the present application. As mentioned above,

we have kept our model space (3×3) to have a spin-free formulation just for convenience. The

singles-doubles coupling involving the low-lying virtual orbitals becomes important at large C–H

distance, which is a sort of Brueckner effect. This cannot be adequately captured by a first order

theory such as SS-MRPT. The single reference Brueckner version VOO-CCD of Head-Gordon and

co-workers [41] captures this effect in the sense that the relative quality of the results remains more

or less similar throughout the PES, though the accuracy is much less as compared with those from

SS-MRPT. It is interesting to note that the parent SS-MRCC, which captures the effects of singles

in a non-perturbative manner captures the Brueckner effect quite adequately. This indicates that

a viable strategy to include Brueckner effect will be to treat the low-lying singles and doubles in a

non-perturbative manner, as in SS-MRCC, and treat the rest of excitations as in SS-MRPT. Such

a development is in progress in our laboratory.

For the 1∆ state, our model space is quite adequate, and very good performance of the SS-

MRPT have been observed. Th SS-MRCC results are also quite good. The 1∆ state was also

studied by Krylov et al. [39] using the linear response version of the VOO-CCD. The excited states

dominated by double excitations are not described well in any linear response theory because of
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Figure 1: The ground state (1Σ+) PES of CH+
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Figure 2: The first excited (1∆) state PES of CH+
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an insufficient inclusion of dynamical correlation and thus the PES of Krylov et al. [39] shows the

deterioration of the quality at large C–H distance. We do not use linear response theories for this

state here, and our SSMR theories remain very good throughout the PES.

As mentioned earlier, we have also displayed in the figures the MCQDPT2 results of Nakano [27],

computed by us using the same model spaces with GAMESS code. The MCQDPT2 uses a single

partitioning of the hamiltonian and chooses a generalized Fock operator for the entire CAS func-

tion in an multi-reference MP strategy. In contrast to our relaxed description, the MCQDPT2 uses

a frozen coefficient description, and is thus inherently less flexible as compared to our approach.

Its performance for the two states studied by us is not as good as SS-MRPT.

Since the computed PES using our SS-MR methods for both the ground and the first 1∆ state

of CH+ system are very close to the corresponding FCI results, it prompted us to compare the ac-

curacy of the spectroscopic constants also using these PES. Using our SS-MRPT and SS-MRCC,

we have calculated the spectroscopic constants, viz. the equilibrium distance re, the harmonic

vibrational frequency ωe, the anharmonicity ωexe, the rotational constant Be, the rovibronic cou-

pling constant αe and the centrifugal distortion constant De of CH+ via a Dunham analysis [42].

In Tables 1 and 2, we provide respectively the values of these quantities for the ground as well as

the first 1∆ excited state of CH+ using the aforesaid suite of methods employing the same basis

set, along with the FCI values. We also list the corresponding results obtained from VOO-CCD

and MCQDPT2 methods. To have a better feeling of the magnitudes of the values, we provide

the experimental values as well [43].

A comparison with the corresponding FCI values clearly demonstrates that the various ver-

sions of our state-specific perturbation theories along with their parent SS-MRCC serve as good

theoretical models for the calculation of the various spectroscopic constants. The performance of

VOO-CCD and MCQDPT2 are also good in this context.

Table 1: Spectroscopic constants for the ground electronic state of CH+.

Method re ωe ωexe De Be αe

EN-SS-MRPT(RS) 1.120 3006 64.9 1.33×10−3 14.436 0.466

EN-SS-MRPT(BW) 1.127 2846 63.4 1.40×10−3 14.167 0.471

MP-SS-MRPT(RS) 1.120 3092 63.2 1.23×10−3 14.341 0.439

MP-SS-MRPT(BW) 1.120 3118 59.7 1.21×10−3 14.340 0.411

MCQDPT2 1.132 2949 58.2 1.27×10−3 14.034 0.415

VOO-CCD 1.133 2910 62.6 1.30×10−3 14.021 0.451

SS-MRCC 1.132 2966 65.7 1.27×10−3 14.074 0.465

FCI 1.131 2921 64.4 1.31×10−3 14.072 0.463

Experiment 1.131 2740 64.0 1.40×10−3 14.177 0.492

re in Å, and all other quantities in cm−1. Experimental data from Ref. [43]
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Table 2: Spectroscopic constants for the first 1∆ state of CH+.

Method re ωe ωexe De Be αe

EN-SS-MRPT(RS) 1.222 2135 82.1 1.53×10−3 12.044 0.656

EN-SS-MRPT(BW) 1.223 2124 84.4 1.55×10−3 12.034 0.674

MP-SS-MRPT(RS) 1.222 2154 82.8 1.51×10−3 12.044 0.655

MP-SS-MRPT(BW) 1.207 2237 88.4 1.51×10−3 12.364 0.685

MCQDPT2 1.204 2276 81.9 1.48×10−3 12.418 0.638

VOO-CCD 1.125 2710 81.2 1.57×10−3 14.230 0.622

SS-MRCC 1.217 2224 81.5 1.45×10−3 12.149 0.632

FCI 1.222 2188 83.4 1.46×10−3 12.044 0.649

Experiment 1.233 2075 76.3 1.30×10−3 11.940 0.620

re in Å, and all other quantities in cm−1. Experimental data from Ref. [43]

5 Summarizing Remarks

In this paper, we have presented a new formulation of the state-specific multi-reference pertur-

bation theories (SS-MRPT), which are designed to bypass intruders. The method is derived as

a perturbative approximant from our size-extensive state-specific multi-reference coupled-cluster

(SS-MRCC) theory. All these SSMR methods work with a complete active space (CAS). By em-

phasizing the role of certain specific terms in leading order in the SS-MRCC formalism, which

simultaneously generate robust denominators free from intruders and maintain size-extensivity of

the formalism, suitable perturbative approximations preserving these twin desirable features have

been suggested. The present perturbative approach has the following advantages: (a) it allows

arbitrary convenient partitioning of the hamiltonian H in the MP and the EN schemes; (b) it can

be realized both in the RS and the BW forms and (c) it uses a completely relaxed description

of the coefficients of the model space functions for computing the energy. The methods can be

shown to be explicitly size-extensive. All these SSMR formulations treat each of the model space

function on the same footing. We have illustrated the formalisms by applying it to study the

PES of the 1Σ+ and 1∆ states of CH+ using a CAS as the model space, and have shown that the

method works well for both the RS and the BW versions, with the MP and EN partitions of H.
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