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Abstract: We herein describe a method of depositing hemagl@db) and sulfonated
polyaniline (SPAN) on GC electrodes that facilitam¢erfacial protein electron transfer.
Well-defined, reproducible, chemically reversiblags of Hb and SPAN can be obtained in
our experiments. We also observed enhanced peszidetivity of Hb in SPAN films.
These results clearly showed that SPAN worked asecular wires and effectively
exchanged electrons between Hb and electrodes.
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1. Introduction

Interfacial protein electron transfer has receiwede and significant research interest. In paréicul
scientists are interested in developing novel leictebnic interfaces that are suitable for faciletgin
electrochemistry [1-4]. Such study should deepen uhderstanding for biological protein electron
transfer and promote the development of bioeleatrsensors for a variety of applications [5-7].

Hemoglobin (Hb, MW=64 500), a molecular vehicle totygen and carbon dioxide in red blood
cells, has been regarded as the paradigm of allogi®teins [8]. The studies on its structure-fimc
relationship have intrigued researchers over tharsyg9-11]. While Hb does not function
physiologically as an electron transfer proteindoes undergo oxidation and reduction at the heme
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center in certain cases in vivo [12-14]. Traditibpait was only possible to employ
spectroelectrochemical techniques in the presehceediators to explore the redox reactions of Hb
[15]. This might arise due to the fact that the being of hemoglobin is much more buried than that
in small redox proteins (e.g. cytochrome c), thiléring its interaction with the electrode surface
[16].

Rusling and coworkers first successfully developatvel approach, which entrap proteins in lipid
films, to achieve direct electrochemistry of Hb apitier heme proteins. This has motivated great
interest in design new protein films that are qlé@dor direct protein electrochemistry. For exaepl
Xia and coworkers reported the direct chemistriibfon a three-dimentionally ordered macropourous
gold film [17]. More importantly, efforts have beetaken to develop novel biosensors and
bioelectronic devices based on this research. Rgcamonducting polymers (CPs) have attracted
considerable attention due to their unique properéind potential applications in various fields, [18
19]. CPs serve as an optimal matrix for biomoleciudterfaces that might enhance speed, sensitivity
and versatility of biosensor systems [20-27]. Yuaktdemonstrated that the use of a kinds of CPs,
sulfonated polyaniline (SPAN) effectively wires ngyobin and horseradish peroxidase (HRP) to
electrodes. Lisdat and co-workers also obtaineddihect electrochemistry of cytochrome c in the
SPAN containing polyelectrolyte assembly [28]. Emhanced electron transfer might arise due to the
“molecular wire”-like feature of conjugated polyrseOther possibilities include the biocompatibility
of SPAN which prevents protein denaturation or suogentation of proteins [28-30]. In this work, we
demonstrated that SPAN facilitated the electrondiier of a larger protein, Hb. We studied the éffec
of SPAN on Hb electrochemistry and explored thesiility of developing Hb-based sensors.

2. Experimental

Chemicals

Hemoglobin (pig) was from Sigma. SPAN was from Adtr Water was purified with a Millipore
MilliQ system to specific resistance of about 1&#m.All other chemicals were reagent grade.
Several buffers were used in this work: 0.05 M ateebuffer (pH 5.5) for preparation of Hbrhe
buffer for electrochemistry is 0.05 M acetate,MBlaCl,pH4.5.

Film Deposition

Glasy Carbon working electrodes (GC) (2 mm in dimneCH Instruments Inc.)were first
mechanically cleaned by polishing on microcloth pé8uehler) with 1.0m alumina,followed by 0.3
and 0.0mm alumina slurry each for 5 min. These electrodesewhen sonicated in ethanol and Milli-
Q water for 5 min, respectively. After dried witiirogen, the GC electrodes were modified by SPAN
and Hb at specific ratios and dried air. The etmtets were finally rinsed with Milli-Q water.
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Electrochemical Measurements

A CHI 660 electrochemical workstation was used dgclic voltammetry. A three-electrode cell
containing a Ag/AgCI reference electrode, a platinwire counter electrode and a GC working
electrode was employed.

3. Results

3.1. Cyclic voltammetry of SPAN on GC electrodes

As demonstrated in Figurel, SPAN deposited on @Ctrldes exhibited two pair of peaks in CV.
One peak pair was centered at 0.36 V vs. Ag/Agad, the other was centered at 0 V vs. Ag/AgCI.
Notably, this two peak pairs were much smaller thlaose obtained at layer-by-layer assembled
polyelectrolyte films. For example, we observedigantly larger peaks by first depositing oneday
of poly(diallyldimethylammonium) (PDDA) on GC elestles and then depositing a layer of SPAN
[30]. This suggested that cationic polyelectrolybesl higher affinity to GC electrodes than anionic
polyelectrolytes. Nevertheless, we note that the peak pairs were roughly located at the same
positions both in the presence and in the absene®DA.

Current,uA
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Figure 1. Cyclic voltammetry of GC electrodes coated with AISPAN (solid line) or SPAN
(dashed line), in pH 4.5 buffer.

3.2. CV of Hb entrapped in SPAN films

As demonstrated in Figure 2, one additional peak g@peared when Hb was entrapped in the
SPAN film. This should arise due to the reductionl @xidation of Hb since the peak potential was
close to previously reported redox potential of [@b The peak currents are linearly proportional to
scan rates (100 mV/s~1 V/s), indicating that ttasai surface-confined process. Interestingly, we
observed that the peaks of Hb increased along twéhratio of SPAN/Hb. We observed that the peak
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currents of Hb increased rapidly at low concentragiof SPAN, while they reached a plateau when the
SPAN concentration reached 0.3 mg/ml. Note thabwnlg observed a pair of very small Hb peaks in
the absence of SPAN. This suggested that SPAN dHacilitate the redox reaction of Hb. As is well
known, hemes are deeply buried in Hb molecules, [8&jich makes them difficult to exchange
electrons with electrodes. Since SPAN is conductikey could work as “molecular-wires” to relay
electron transfer (Figure 3). These molecular wineap Hb molecules and facilitate the heme-
electrode electron transfer. This also explaineddbservation of the plateau, which arises duéeo t
saturation of SPAN.

3.3. Catalytic Reduction of Hydrogen Peroxide

Hb is potentially a peroxidase.,®, converts the iron heme cofactors of Hb to oxyferadicals
that can be reduced backed to the Fe(lll) form. MMHb is coupled to an electrode, a complex catalyti
cycle for the reduction of ¥D, is set up that can be detected via a catalytioatézh current [32-34].
However in the absence of SPAN, the peroxidaseigcof Hb was very low. We observed that this
effect was greatly enhanced in the presence of SP¥Nition of micromolar amounts of J, to
buffer solutions bathing SPAN/Hb film gave incremse CV reduction current at the Fe(lll) peak,
accompanied by a disappearance of the Fe(ll) arilapeak. Figure 4 showed influence of
concentration of kD, on the catalytic CV peak of SPAN/Hb film at pH 4VBe observed that catalytic
peak currents increased along witfOzconcentration. This clearly showed the nice catabffect of
Hb entrapped in SPAN films.
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Figure 2. (a) Influence of concentration of SPAN on CV resg®of Hb (the concentration of Hb was
1 mg/mL). The inner blank curve stands for CV ia #bsence of Hb. (b) The peak current of Hb
increased with increasing SPAN concentration.
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Figure 3. Schematic depiction of the multiplayer electrad&cles=Hb, lines=SPAN, rectangle=GC
electrode.
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Figure 4. Influence of concentration of @, on the catalytic CV peak at 0.3V/S for SPAN/HB=&t1
pH 4.5

4. Discussion

Electrochemistry of hemoglobin in organic films Hasen extensively studied [7, 35]. However,
most previous systems involve the use of organiests as co-immobilizing reagents [7, 35-37]. We
note that organic solvents by itself can facilitéte electron transfer of proteins [36], thus itlifficult
to separate the effect of organic films from thévewot effect. In addition, organic solvents are lwel
known to induce structure alteration of proteirimjst complicating the explored system. In contrast,
since SPAN is essentially water-soluble, it offargprotein-encapsulating medium free of organic
solvents. Compared with other organic solvent-Bgstems [38], SPAN is a conjugated polymer,
therefore it acts as a molecular wire to effectivebmmunicate electrons with substrate electrodes
[30]. Moreover, SPAN is electroactive by itselfetafore we can conveniently monitor the layer-by-
layer assembly process of SPAN and hemoglobin fitmenpeaks corresponding to the redox reaction
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of SPAN. Given these advantages, we propose teaprisent system might provide an ideal system
for studying the electrochemistry of heme proteins.

5. Conclusion

In this work we report the direct electrochemistfyhemoglobin in the presence of a molecular
wire-like polymer, SPAN. This water-soluble conjtegh polymer not only facilitates the electron
transfer reaction of hemoglobin, but also can lodely assemble on electrodes via a layer-by-layer
approach. Also important, hemoglobin exihibits nazgalytic activity toward reduction of hydrogen
peroxide in the SPAN film. We thus expect that described system might offer a new approach for
investigation of protein electrochemistry as wslidesign of novel bioelectronic devices.
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