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Box 1. Protonic induction and hydraulic action of a water soliton (Fig.1 A,B; Movie.1,2)  
 

Definitions 
 

 
Relations 

 
Laws and Values 

 
A. H2O-H+- the high-energy source of H +: 
∆E1 – free energy of H2O-H+ in water. 
Ek(H+), M(H+), V(H+), - kinetic energy, mass,              
and velocity of H+. 
∆E2 –heat of evaporation-condensation. 
∆E3 –heat of acid-base neutralization. 
∆E4 – the free energy of ATP hydrolysis 
∆E5 – the enthalpy of ATP hydrolysis in           
closed cycles of muscle contraction. 
 λ – de-Broglie wavelength of H+. 

 
[H2O-H+]/[H 2O] = EXP{-∆∆∆∆E1/kT} 

Ek(H+) = ∆∆∆∆E1   
V(H+) = (2*Ek(H+ )/M(H+))1/2 

 
 

∆∆∆∆E1 =  ∆∆∆∆E2 =  ∆∆∆∆E3 =  ∆∆∆∆E4 = ∆∆∆∆E5 =  ∆∆∆∆E 
 
 

λ = h / ((M(H+)*V(H+)) 

 
The Maxwell - Boltzmann relation.  
∆∆∆∆E1 = - kT*ln[10 -7/ 55.6 ] = 20*kT   
(at 290°°°°K,  kT=0.4*10 -13 ergs) 
V(H+ ) = 106 cm/sec = 10 km/sec 
 
∆∆∆∆E = 0.8*10-12 ergs = 0.5proton*volt = 
     = 11.5 kcal/mole = 48kJoule/mole   
 
λ = 0.4*10-8 cm 

 
B. Dimer’s spin (s) and precession (p): 
Ed – the binding energy between dimers 
Es, Ls, Is – the dimer spin kinetic energy, 
angular momentum and moment of inertia.  
R(H1), R(H2)– spinning radiuses of the 
dimer two pairs of bound protons.  
Mp, Mw – proton and water molecule mass. 
Ld, Dd, Nd – the length, width and volume of 
dimer occupation in liquid water, assuming 2 
lengthwise and 4 anti-parallel neighbors. 
Dw – effective diameter of a water molecule 
Dwp, Vwp, Ewp – the water molecule 
precession diameter, velocity and energy. 
fdp, Ldp, Edp – the dimer’s precession 
frequency, angular momentum, and energy  
fmw, Emw - microwave  frequency and 
energy. 
All values are related to the higher state of 
dimer precession. 

 
-Ed = ∆∆∆∆E = 2*Es 
Es = Ls 2 /(2*Is) 

 
R(H1) = 2*R(H2) 

Is = 2*Mp*(R(H1) 2+R(H2)2 ) = 10*Mp* R(H2)2 
Ls = (2*Is*Es) 1/2 = (20*Mp* R(H2)2 *Es) 1/2 

 
Mp = 1/A# gr, Mw = 18/A# gr 

(A# = 6.022*1023  - Avogadro’s #) 
 

Nd = Ld*(Dd) 2 = 2*18/A# cm 3 

Dwp = Dd - Dw 
 

Mw = 18/A# gr 
Ldp = 2*Mw*Vwp*Dwp/2 = ħ 

Vwp = ħ/(Mw*Dwp),      Ewp = ½*Mw*Vwp 2 
Edp = 2*Ewp,  Edp = Emw = h*fdp  

 

 
The virial theorem. 
Es = 0.4*10-12 erg, Mp = 1.67*10 -24 gr 
 
R(H1) = 2*R(H2) = 1.4*10-8 cm (Fig.1a) 
Ls = 25.6*10 -27 erg*sec ≈≈≈≈ 25*ħ  
    
 
Nd = 6*10-23 cm 3 ,  Ld = 4.2*10 -8 cm 
Dd = 3.8*10-8 cm, Dw ≈≈≈≈ 1.3*10-8 cm 
Dwp = 2.5*10 -8 cm  
    
 
Mw =  3*10-23 gr 
Vwp = 1.4*10 3 cm/sec  
Ewp =  3*10 -17 ergs 
Edp = Emw = 6*10 -17 ergs 
fdp = fmw  ≈≈≈≈ 1010 cycles/sec 

 
C.  The soliton’s dimensions:  
L(H+), t(H+) – H+ flight length  and duration. 
Ns – number of water molecules per soliton. 
Ms, v, ρ, Rs, Ls – soliton’s mass, volume, 
density, radius and length. 
Nd/r, Nr/s - number of dimers per ring, and 
number of rings per soliton. 
 

 
t(H+) = 1/fmw 

L(H+) = 0.5*V(H+)*t(H+) 
Ns = ∆∆∆∆E/ Ewp = Ms/ Mw 

Ms = Ns*Mw = v* ρρρρ 
v = ππππ*Rs2 *Ls,  Ls = L(H +) 

Rs = [ v / ( ππππ*Ls)]  ½ 
Nr/s = 0.5*Ns/Nd/r  

 
t(H+ ) = 10-10 sec 
L(H+ ) = 0.5*10-4 cm = 0.5  µ µ µ µm 
Ns = 26768  water molecules, ρρρρ = 1 gr/ cm 3 
Ms = 0.8*10-18 gr, v = 0.8*10 -18 cm 3 
Ls = 5*10 -5 cm = 500 nm  
Rs = 7*10-8 cm = 0.7 nm   
Nd/r = 8,  Nr/s = 1673 

 
D. The soliton hydraulic action:  
∆E, ∆Po, ∇P, Fs – the soliton’s energy, 
pressure-head, pressure-gradient, force,  
Fp(r), Ft(r), T(r), Vf(r) – pressure-head force, 
tangential motive force, shearing stress, and 
effective flow velocity of AS, at radius r ≤ Rs. 
η, FRs – water viscosity and soliton flow rate. 
Vs, τ - the soliton’s translation velocity and 
propelling duration across ∆Po, in absence 
of external work production.  
V1s, H1s, f1s – velocity per unit length, 
power and shearing factor per unit volume.  
 
HR1s – the hydrolytic-rate per unit volume of 
the A-M  ATPase, corresponding to H1s. 

 
Fs = ππππ*Rs2 *∆∆∆∆P = ππππ*Rs2 *L*∆∆∆∆P/L =  v*∇∇∇∇P 

∆∆∆∆E = ∫∫∫∫ v*∇∇∇∇P*dl = v* ∆∆∆∆Po 
Thus:  ∆∆∆∆Po = ∆∆∆∆E / v 

Ft(r)  =   Fp(r) 
T(r)*2π2π2π2π*r*L = ∆∆∆∆Po*ππππ*r2 

T(r) = ½*∆∆∆∆Po/ L* r = k*r 
T(r) = -ηηηη*dVf(r)/dr 

Vf(r) = ∫∫∫∫ dVf(r)  = k/ ηηηη* ( Rs2- r2 ) 
FRs = ∫∫∫∫ Vf(r)*2∗π2∗π2∗π2∗π*r*dr = k/(2 ηηηη)*ππππ*Rs4 

= ∆∆∆∆Po*ππππ*Rs4/(4*ηηηη*Ls)     
ττττ = v/ FRs = Ls/ Vs = 1/ V1s 

H1s = (∆∆∆∆E/v)/  τ τ τ τ = ∆∆∆∆Po/ τ = τ = τ = τ = ∆∆∆∆Po*V1s     
f1s = H1s/ V1s 2  = ∆∆∆∆Po*τ  = τ  = τ  = τ  = ∆∆∆∆Po/ V1s     

 
HR1s = H1s/ ∆∆∆∆E 

 

 
A general version of Archimedes Law. 
Bernoulli’s Equation.  
∆∆∆∆Po = 106 erg/cm 3 = 0.1Joule/cm 3 =   
        = 10 Newton/ cm 2  ≈≈≈≈ 1 kgwt/cm 2 
Balance between the shearing force of AS 
and the opposing pressure-head force. 
Newton’s Stress-Viscosity Relation. 
Active version of Poiseuille’s Law.  
ηηηη    = 10-2 Poise = 1cP ( at 20 °°°° C ) 
FRs = 4*10-17 cm 3/sec     
τ  τ  τ  τ  = 20 msec  
V1 s = 50 sec -1  ,  Vs = 25 µµµµm/sec  
H1s ≈≈≈≈ 5*107 erg/sec/cm 3 = 5 Watt/cm 3 
f1s ≈≈≈≈ 2 mJ*sec/cm 3  
HR1s ≈≈≈≈ 100 (µµµµmole ATP)/ cm 3/sec 

 
E. Solitons in a half sarcomere (hs):  
Fhso – the isometric hydraulic force in 
sarcomere compression. 
Lhs, Ahs, Vhso, Nhs  –  length, cross-section 
area, unloaded shortening velocity, and 
volume of a half sarcomere. 
V1o, H1o, f1 - velocity per unit length, power 
and shearing force factor per unit volume for 
a half sarcomere, at unloaded contraction. 
 
These relations are applied for the 
quantitative formulation of muscle 
contraction (Box3).  

 
 

Fhso = ∆∆∆∆Po*Ahs = ∆∆∆∆Po*Nhs/Lhs  
 
Vhs(max) = V1o (max)*Lhs = V1s*Ls = Vs 

H1o(max)*Lhs = H1s*Ls 
∆∆∆∆Po = f1*V1o (max) = f1s*V1s 

Therefore:       H1s/ H1o(max) =  
 = V1s/ V1o(max) = f1/ f1s = Lhs/ Ls 

 
The same value of f1 is related in general 
to striated muscle contraction, therefore: 

f1*V1o(max) = Po = 1000grwt / cm^2 
H1o = f1*V1o^2 

 
 
∆∆∆∆Po is independent of HR.  
Fhso is proportional to Ahs. 
 
Lhs/ Ls ≈≈≈≈ 2 
Vhs(max) = Vs = 25 µµµµm/sec;   
V1o(max) ≈≈≈≈ 25 sec -1; ( at 20 °°°° C ) 
H1o(max) ≈≈≈≈ 2.5W/cm 3;  
f1 ≈≈≈≈ 2*f1s = 4 mJ/cm 3 * sec  
                 = 40 grwt*cm/cm 3*sec 
 
H1o ≈≈≈≈ 4*V1o2  mW/cm 3  ( at 20°°°° C ) 
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Box 2. Heat contributions due to elastic and baro-entropic components in a half sarcomere  

 
Definitions 

 

 
Parameters, Relations, Results 

 
A.    Heat due to series and transverse elastic ele ments: 
N, Ao, Lo – half sarcomere volume, cross-section area, and length. 
Sel, Tel - series and transverse elastic elements.  
∆Lo/ Lo - the relative extent of quick release from  Po to 0. 
C’, C1 - compliance and compliance per unit cubic volume of muscle, 
related to the Sel that reside in the Z-regions. 
Eel(=)/N, Eel(+)/N – maximal density of mechanical energy stored in 
Sel and Tel during isometric contraction.  
Q(SH) - Shortening Heat, the heat released by ongoing relaxation of 
the transverse elements, Tel, during isotonic shortening. 
Qel - the total heat released by Sel and Tel   
 
Del – Approximate duration of full tension development on the elastic 
elements under the intrinsic power H1o (Box1, V; Box3, III). 
 

 
(∆Lo/ Lo) = 6⋅10 –3          [1]  

∆Lo/ Lo = C’*Fo/ Lo = (C’*Ao/Lo)*Po = C1*Po  
Therefore: C1 = (∆Lo/ Lo) / Po = 6⋅10 -3 (kgwt/cm2) -1 ,  and 

Eel(=) / No = ½*C’*Fo2 / (Lo*Ao) = ½*C1*Po2 = 0.3 mJoule/ cm3 
 
Assuming equal contribution of elastic energy in each orthogonal 
direction: 

Q(SH)/ N = Eel(+)/ N = 2*Eel(=)/ N  = 0.6 mJ/ cm3 
Qel / N = Eel(total)/ N = E1el = 0.9 mJ/ cm3. 

These values account for measurements of heat of shortening, which 
depends on the isotonic load, and for the duration of tension 
development in isometric contractions, namely: 
 

Del ≈≈≈≈ E1el/H1o ≈≈≈≈ 1/(4*V1o2)  sec     ( at 20° C ) 

 
B.     Heat due to a  bulk baro-entropic effect in water:  
N, P, T - volume, pressure, and temperature (°K) of the water phase. 
β=1/N*(∂N/∂P)T  - water compression coefficient. 
γ = 1/N*(∂N/∂T)P  - water coefficient of thermal expansion.  
Q(BEH) - Baro-Entropic Heat, heat exchange due to change in entropy 
( ∆S) associated with change in the bulk water pressure (∆P): 
By the Gibbs' thermodynamic potential:  

dG = -S*dT+N*dP 
(∂S/∂P) T  = - (∂N/∂T)P = - ∂2G/(∂P*∂T) 

∆S  = ∫ (∂S/∂P)T*dP = - ∫ (∂N/∂T)P*dP = -γ*N*∆P 
Q(BEH)  = T*∆S = -γ*N*T*∆P         (T in °K) 

 

 
Bulk water expansion and entropy heat exchange are anticipated 
during isometric contraction due to a maximal decrease in hydrostatic 
pressure, ∆P = -Po, within about half sarcomere volume.  
Thus:                       ∆N/N = 1/2*β*∆P = 25*10-6  
Where    β = -50*10-6 (kgf/cm2)-1 at 20 °C, as observed [2] 
Q(BEH)/ N = T*∆S/ N = 1/2*γ*T*Po = 3*10-2 kgwt*cm/cm3 = 3 mJ /cm3, 
Where for water at T= 300°K,  γ = 2*10-4 deg-1 .  
This relation predicts heat absorption during a rise in tension, and 
reversible heat release during relaxation, above 4°C, and vise-versa 
below 4°C where γ < 0, as observed [3,4]. 
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Box 3. Mechano-chemical conversion into hydraulic compression by active streaming in isotonic and 
isometric contractions ( Fig.3;  Interactive Workbook 1) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Definitions 

 

 
Relations 

 
I. A.    The power-balance  and force-velocity rela tions  
J.         (for a half sarcomere of 1 µm at 20˚C )*: 
Hm', Hq',  Hh' – mechanical, heat and hydrolytic power components. 
u, e – rate, and mechano-chemical energy, of ATP hydrolysis. 
Ht', Hc' – heat components due to translation and circulation of AS. 
Vt', Vc' – flow velocity of the translation and circulation of AS. 
V' = Vt’, F' - shortening velocity and the hydraulic force. 
Ft' = f*Vt’, Fc' = g*Vc’ – fluid shearing forces related to Vt' and Vc'. 
L, A, N – length, cross-section area and volume. 
V1 ,  P1 , H1 – velocity, force, power, per unit of length, area, volume.                                   
V1o, P1o, H1o – the above unloaded and isometric values. 
V  ,   P,    , H    -  the variables normalized by the  isometric values.   
 
* Note that no account is made for the expansion effect and for 
viscosity changes with temperature. 

 

 
                         
 
                         Hm'   +             Hq'                     =   u*e 
                         Hm'   +    Ht'       +    Hc'             =   Hh'   
                        F'*Vt'  +   f*Vt'2     +  g*F’2            =  Hh'  /  A*L = N 
                       P1*V1 +   f1* V12  + g1 *P12         = Hh1 / Normalize 
          P1o*V1o*P*V + f1*V1o2 *V2+ g1*P1o2*P2  =  Hh1 
Divide by         Hh1o =  f1*V1o2  =   g1*P1o2    
to get the normalized relation:           

            Hm  +    Hq        =  Hh                     (1) 
                               
                              a*P*V + V2 + P2   =  Hh                      (1’)  
 
a = Fo’*Vo’/ Hho’ = P1o*V1o/ Hh1o = P1o/(f1*V1o) = V1o(max)/ V1o  
Where:  P1o = Po = 1kgwt/cm2  ,  V1o(max) = 25 1/sec   (at 20˚C) 

 
B.     The Fenn Effect inclusion:  
The Fenn Effect was revealed as an increase of Hh in linear proportion 
to Hm.  Theoretically, this effect is predicted by a decrease in the 
soliton lifetime upon external energy transfer. Thus, a change in Hm 
induces equal but opposite changes in both Hh and Hq, relative to 
Ho=Hho=Hqo = 1. This argument leads to the differential and integral 
relations of the Fenn Effect.  
 
As presented and enacted in the attached Microsoft Excel workbook,  
The P-V profile for a given value of a, is obtained by taking the variable 
parameter Hm in steps from zero to its optimum value  Hmop, and 
down to zero.  Thus, Eq.3 enables to construct the P-V profiles of 
isotonic contractions (Fig.3 A,B), isometric tetanus, and twitch 
contractions (Section C, Fig.3 C, D)).  It further enables a theoretical 
evaluation of the phenomenological force-velocity relation of A. V. Hill.  

 
The differential relation for the Fenn Effect:      

               dHh/dHm = - dHq/dHm                 (2) 
Apply Eq.2 on  Eq.1 to get the integral Fenn Effect relation: 

      Hh = 1+ Hm/2,  Hq = 1- Hm/2            (2’) 
Substitute        Hh = 1+ 0.5*a*P*V in  equation (1’), to get:  

         a*P*V + V2  + P2  =  1 + 0.5*a*P*V         (3) 
Substitute       P = Hm/(a*V)  to get:   
                                  V4 – b*V2 + c = 0                              (3’)  
Where                     b = 1- Hm/2 ; c = (Hm/a) 2            
By symmetry, the solution of Eq.(3’) for a given Hm and a is: 

     (V2)1,2 = (P2)2,1 = b/2  ±±±±   ((b/2)2 - c)1/2          (3’’) 
 

At optimum :         Pop = Vop,   (b/2)op = Hmop/a         (3’’’) 
Therefore:                 Hmop = 2*a/(a+4) = a*Pop 2 

Pop = (2/(a+4)) 1/2 
a = 2/Pop 2  -  4 

 

 
C.   Isometric contractions against elastic element s:  
 
Tetanus (Fig.3 C of the manuscript): 
C’, C1, C – compliance, compliance per unit cubic volume of muscle, 
and the normalized compliance.  
Em, Eq, Eh – Normalized mechanical, heat, and input energy. These 
values are obtained by numerical integration of successive isotonic 
states, as presented in the attached workbook (Suppl Workbook 1).  
To, Eo – the units of time and energy, defined by V1o and H1o. 
  
Twitch (Fig. 3 D): 
C(P, N(t)=1) – The load-normalized compliance  for  twitch contraction 
that develops the tension P, during the time t, when the AS circulation, 
Vs, just spans the whole sarcomere volume. This total circulation flow 
is presumed to allow for peripheral effective depletion of calcium ions 
by the sarcoplasmic reticulum.  
 

 
 
 
                                    dL`= C`dF`=>V`= C`*dF`/dt`                   (4) 
The normalized formula is:   dL/dt = V = C*dP/dt                       (4’) 
Where: dL= dL`/Lo,  V = V'/V'o = V1/V1o ; F = F'/Fo’= P’/Po = P;   
C1 = C’*Ao/Lo = dL/dP’ ; C=C1*Po; dt=dt`/to; to=1/V1o; Eo = H1o*to  
 
dEm/dt = Hm => dt = dEm/Hm                                                   (5) 
 
Em(t)=∫Hm*dt=∫ a*V*P*dt=∫a*C*dP/dt *P*dt = 0.5*a*C*P(t) 2      (6) 
 
Eq(t) = ∫Hq*dt = ∫(1-Hm/2)*dt = t – Em(t)/2                                  (7) 
 
Eh(t) = ∫Hh*dt = ∫(1+Hm/2)*dt = t + Em(t)/2                                 (7’) 
 
Twitch condition: N(t) = ∫Vs*dt = 1,       where: Vs = (Hh)1/2         (8) 



 

 
 
 
Table 1.Molecular distances in a pair of dimers (Fig.1A) 
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HH  1.41  2.65 2.83   4.24 4.47 5.10  6.56   


