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Abstract: A new algorithm to extract the velocity caused by the external forces in 

molecular dynamic simulation of nanoscale flow problems is proposed. The flow 

velocity, an important component in these type of problems, is usually obtained from the 

average value in the time space because the accumulation of the thermal velocity will 

approach zero when the time period is large, but this method is not always suitable, 

especially when the flow velocity is much smaller than the thermal velocity. Based on the 

idea of the linear accumulation of the flow velocity, in this study a new algorithm is 

derived to extract the flow velocity. This algorithm can be used to calculate nanoscale 

flow problem no matter whether the value of the flow velocity is big or small. Using this 

new algorithm, the 2-D liquid flow of argon in nanochannels was simulated. The 

numerical result demonstrates the effectiveness of the new algorithm. 

 
Keywords: Velocity extraction; molecular dynamic simulation; low speed; nanoscale 

flow. 

 

 

Introduction  
 

Nanoscale flow studies are important in physiology, medicine and for design of nanoscale devices, 

etc. Molecular dynamic simulation (MDS) is used to calculate nanoscale flow problems because the 

continuum model is no longer valid when the dimensions of flow systems approach the molecular size. 

Good reviews regarding the models and solution methods of nanoscale flow problems have been 

published [1, 2]. In many papers, i.e. by Travis et al. [3, 4], Thompson and Robbins [5], Heinbuch and 

Fischer [6], MDS methods were applied to resolve nanoscale flow problems, particularly for the study 
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of the boundary slip phenomena. 2-D and 3-D pressure driven channel flow problems were also 

investigated using the MDS method. In most papers the fluid was liquid argon and the Lennard-Jones 

potential was used to describe the intermolecular interactions. Usually the Couette or Poiseuille steady 

flow was considered to illustrate the effectiveness of the MDS method. Travis et al. [3, 4] found that if 

the pore width was less than five molecular diameters, the Navier-Stokes (NS) equations break down. 

Travis et al. also reported [3] that when the channel width equals 5.1 molecular diameters, the solution 

given by the molecular dynamics approach deviates significantly from the NS equations solution, 

whereas when the channel width equals 10.2 molecular diameters, the molecular dynamics’ solution is 

similar to that of the Navier-Stokes equations. This means that when the channel width is very small 

the NS solution is meaningless and we should use molecular dynamics to simulate it. Zhang et al. [7] 

calculated a confined fluid with a nonequilibrium MDS method and discussed the phenomena of 

constant pore size and constant load.  Thompson and Robbins [5] simulated boundary slips with 

different solid wall density and interaction strength parameters. They found that the boundary slip 

could be observed only for very weak fluid-wall interactions. Similar problems were also studied by 

Koplik et al. [8] and Koplik and Banavar [9]. Todd et al. [10] introduced an effective viscosity method 

to deal with the inhomogeneous viscosity distribution problem. Instead of solving the difficult 

inhomogeneous viscosity problem, the effective viscosity method adjusts the real viscosity to match the 

molecular dynamic simulation result. Moseler and Landman [11] and Eggers [12] have discussed nano 

jet problems. 

Although the MDS method has been used to model some nanoscale flow problems, as mentioned 

above, there is a crucial problem associated with this approach. In the MDS method, the flow velocity 

of the molecules caused by the applied external force is mixed with the thermal velocity. If the flow 

velocity is much smaller than the thermal velocity, which is usually more than 100 m·s-1, it is difficult 

to extract the flow velocity from the much bigger thermal velocity. As most nanoscale flow problems 

relevant to real applications deal with low speed flows, the direct application of MDS method is not 

workable. Until now, in all studies the minimum flow velocity used was several meters per second.   

Certainly, MDS is correct for nanoscale flow. The problem is the method used to calculate the flow 

velocity is not suitable. Thus, how to extract the flow velocity is an important part in the MDS of 

nanoscale flow. The traditional way to extract the flow velocity is using the idea of time average 

because the accumulation of the thermal velocity will approach to zero while the time period is large, 

but this method is not always appropriate, especially when the flow velocity is less than several meters 

per second. That is, numerically, the accumulation of the thermal velocity will never reach zero and the 

algorithm based on this idea is not valid for low speed problems, regardless of the elegance of the 

algorithm. 

In this paper we propose a new algorithm to extract the velocity caused by the external forces. The 

idea of this algorithm is as follows: in each time step, we calculate an increment of the flow velocity, 

and the total flow velocity is the accumulation of the increments in all time steps. This idea is 

reasonable because at any given time step, we can get the external force increment from the linear 

development of the total force function. This algorithm can be used to calculate nanoscale flow 

problem even the value of the flow velocity is very small. Furthermore, when using MDS method in 

the surface problems [13-16], fracture mechanics [17-19], heat transfer problems, lubrication problems 

[20], material science [21] and friction problems [22], we also need to calculate the moving velocity 
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caused by the external force, or other external conditions, so the algorithm presented here is also 

suitable for these kinds of problems. To demonstrate the effectiveness of this new method, we 

simulated several examples of 2-D flow in slit nano-channels with different channel heights.  

 

Principle of the new method 
 

Let us consider an isothermal pressure-driven steady state 2-D Poiseuille flow in a straight channel. 

Let x represent the direction of flow, while h represents the channel height in the y direction, that is the 

direction perpendicular to the flow. Each channel wall, i.e., the boundary perpendicular to the y 

direction, is modeled in terms of four rows of particles of solid wall material [5]. Initially, both the 

fluid particles and the solid wall particles are positioned in fcc lattices [23]. In the x direction we use 

the periodic boundary conditions [24]. 

If v  represents the total velocity vector of the fluid, it can be expressed by 

v = vT + ve . (1) 

In a macrosopoic problem, if there is no external force, the fluid will be in an equilibrium state, and 

the flow velocity v = 0, but when we simulate a nanoscale problem with the MDS method, even if 

there is no external force and it is an equilibrium molecular dynamics problem, the calculated flow 

velocity will never be zero. Certainly, at this time, the nonzero flow velocity is due to the modeling and 

numerical errors. We represent this part of the velocity by vT. When external forces are exerted, a real 

flow velocity of the fluid will exist. We represent this part of velocity by ve. Theoretically, vT should be 

zero, but numerically it is not zero. In fact, in MDS vT is not only nonzero, but it is quite big and 

usually equals several hundred meters per second, so if the real flow velocity is small, it is difficult to 

know the exact value of ve according to equation (1).  

In MDS methods [3-5], the flow velocity ve can be calculated by     
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where tN  is the number of time steps. The subscript k refers to the kth time step. Equation (2) is based 

on the concept that if tN approaches infinity 
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This is the traditional method used in most MDS algorithms. During the calculation we consider a 

small volume with a specific point inside and vk is the average velocity vector of all particles inside 

this volume at a particular moment [24]. Many studies verifying this method are available when the 

scalar velocity ve is not less than several meters per second, but when ve is much smaller than the scalar 
velocity vT, the above method does not work because, numerically, vT = 0 is not true even whentN is 

sufficiently big. Therefore we have to devise a new way to calculate the velocity ve.  

If , at the k-1th time step, we know the velocity of the ith particle vik-1, then, at the kth time step, the 

velocity of the ith particle vik can be expressed by  
e
ik

Te
1ik

T
ik ∆∆

ik1ik
vvvvv +++= −−

. (4) 

Let ikF  represent the total force exerted on the ith particle at the end of the k-1th time step; T
ikF and 

e
ikF represent the force corresponding the equilibrium MDS problem and the force caused by the 
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external loads, respectively. If there is no external load then 0e
ik =F , but T

ikF  is still nonzero. We 

have e
ik

T
ikik FFF += . In equation (4) the increment of velocity e

ik
T
ik ∆vv +∆ depends on the forceikF . 

Here T
ikv∆ is the velocity increment caused byTikF  at the kth time step; e

ikv∆ is the velocity increment 

caused by e
ikF  at the kth time step. So the flow velocity of the ith particle at the kth time step e

ikv  can be 

calculated by 
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and we have the flow velocity  
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where the initial value of the flow velocity 0v =e
i0 and im  is the mass of the ith particle.  

Figure 1 illustrates the positions of particles i and j at moment t and t +∆t , corresponding to the k-

1th and the kth time steps, respectively. The vector distance between these two particles at moment t 

is ijr . The vector velocity difference between these two particles is ij∆v . Because only the relative 

positions is involved, without lose of generality, we can assume that the position of particle i is not 

changed. At moment t +∆t , because of the velocity differenceij∆v , the particle j moves from point j to 

point j2. The distance between these two particles is ijij ∆rr + , where ∆t∆∆ ijij vr = . The distance change 

is e
ij

T
ijij rrr ∆+∆=∆ , where tT

ij
T
ij ∆∆=∆ vr ; te

ij
e
ij ∆∆=∆ vr ; T

ijv∆  and e
ijv∆  are the velocity increments 

caused by the heat movement and the external forces, respectively.  

 

Figure 1. Distance between particles i and j at moment t and t +∆t . 

 
From Figure 1 we see that tt e

ij
T
ij

e
ij

T
ijij ∆∆+∆∆=∆+∆=∆ vvrrr . It means the distance between 

particles i and j is influenced by both Tijv∆  and e
ijv∆ . Obviously, the distances between particles i and j 

are different for 0e
ij =∆v  and 0e

ij ≠∆v . Also, the interaction forces are different for 0e
ij =∆v  and 

0e
ij ≠∆v  because they are functions of ijrr ∆+ij . At moment t +∆t , the interaction force is 

)()( e
ij

T
ijijijij rrrrr ∆+∆+=∆+ ff . The form of )( ijij rr ∆+f  depends on the potential function. Thus, we 

think the interaction force as consisting of two parts. The first part corresponds to 0e
ij =∆v , that is 

)( T
ijij rr ∆+f , we represent it by TijF . The second part is the additional force increment because 

0e
ij ≠∆v , that is −∆+∆+ )( e
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T
ijij rrrf )( T

ijij rr ∆+f , we represent it by eI
ijF . If there is no external force, 

we have 0e
ij =∆v  and then 0F =eI

ij . So eI
ijF  is caused by external force. Now e

ikF  consists of two parts, 
eII
ik

eI
ik

e
ik FFF += , where eI

ikF  represents the interaction force due to the external load caused additional 

distance change between different particles; eII
ikF  represents the external load exerted directly on 
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particle i, usually iim g . eII
ikF  depends on the form of the external load. If the potential function between 

the ith particle and the jth particle is )r(u ij  we have the following interaction force function 
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where e
ij∆r and e

ij∆r  are the change of the scalar and vector distance ijr and ijr  caused by the external 

conditions, respectively;  T
ij∆r and T

ij∆r  are the change of the scalar and vector distanceijr and ijr  

without external loads, respectively. From (8) we know that the increment of the interaction force 

between the ith particle and the jth particle caused by the external conditions is 
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Thus, at the kth time step, the total interaction force of the ith particle, caused by the external 

conditions, can be expressed by 
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(10) 

e
1-ijk∆r  and e

1-ijk∆r are the change of the scalar distance ijr and the vector distance ijr  at the k-1th time 

step caused by the external conditions. e
1-ijk∆r  and e

1-ijk∆r  can be calculated according to the positions 

of particle i and j. At the beginning of simulation, fluid particles are allowed to move without applying 

the external force until a thermodynamic equilibrium state is reached. At this stage, it is an equilibrium 

problem. Usually, this process needs thousands of time steps or more. Then the external forces are 

applied and the non-equilibrium simulation starts.  
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According to the geometrical relation in Figure 1 we have the following scalar distance expressions: 
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Subtracting (12) from (11) and considering T
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∆−∆= , after some mathematical 

manipulations, we obtain: 
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On the left hand side of (13) both eij∆r  and ijr  are scalar lengths. Usually ∆t  is small and both ijr∆  

and T
ijr∆ are much smaller than ijr . We should notice here the smaller ijr∆  and T

ijr∆ are ensured by the 

size of ∆t , so we do not need to assume the flow velocity is small. Considering that all the variables in 

(10) correspond to the k-1th time step, we add a subscript k-1 to represent the value at this time step 

and then equation (13) can be simplified to 
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The procedure of the algorithm is: at the kth time step, for any particle i, we calculate e 1-ijkr∆  by 

formulae (14) and e
1-ijkr∆ = te

1-ijk ∆∆v , then the force exerted on this particle at this moment e
ijkF and 

e
ikF by (10). Finally, the flow velocity increment e

ikv∆  and the flow velocitye
ikv  can be calculated by (5) 

and (6), respectively. When using (14) to calculate e
1-ijkr∆  the term e

1-ijkv∆  is the velocity increment 

corresponding to the k-1th time step and it is already known.  

The considered Poiseuille flow is a steady state problem. The system temperature should be fixed 

throughout the flow process. To avoid increases of the system temperature during the simulation due to 

external forces or other unphysical effects, a constant temperature constraint is added. If the external 

forces are included in the system, it becomes a non-equilibrium molecular dynamics problem. 

Reference [25] is a good review regarding nonequilibrium MDS in flow problems. In this case the 

movement equation of particle i is  

)(αmm e
iiiiiii vvgFv −−+=&  . (15) 

This is so called Gaussian thermostat method for nonequilibrium flow problems [25, 26]. For 

equilibrium flow problems, both ig  and e
iv  are zero vectors in (15). Because the flow velocity should 

not affect the temperature of the system, in the last term of (15), we deduct it from the total velocity. 

Here iv& is the derivative vector of the velocity of the ith particle with respect to the time variable. 

iim g is the external force vectoreII
iF . iF  is the total interaction force exerted on the ith particle. It is 

composed of two parts, eI
i

T
ii FFF += . T

iF is the interaction force without external loads. eI
iF  is the 

additional interaction force caused by the external force. We do not need to calculateiF  separately. 

This means that during the simulation, we do not need to use the sum of TiF and eI
iF  to get iF . We can 

calculate iF  according to )()(
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T
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∇−=+= FFF  and the position of particles directly. α  is a 
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thermostat multiplier to keep the kinetic temperature constant in the system. It can be obtained from the 

constant temperature condition [25, 26]. This is one of the usually used methods in thermostat 

molecular dynamics. When calculate the system temperature, for each particle, the flow velocity should 

be subtracted from the total velocity.  

 

Simulations of 2-D Poiseuille flow  

 

In this Poiseuille flow we assume that the external force exerted on fluid particle i is iim g , that is 

ii
eII
ik m gF = . Here gi is the equivalent constant gravity acceleration vector. There are N particles within 

a length L along the flow direction and a height h of the flow channel. The initial velocity is given by 

the original temperature. In these simulations the fluid material is liquid argon and the Lennard-Jones 

potential is used. The cutoff radius is taken as rc = 2.5σ. The interaction between the liquid and the 

solid wall is considered by the interaction strength parameter of the wall particles to the liquid 

particles. As mentioned before, in our simulations, the solid wall particles are fixed. Certainly this 

fixed boundary particle assumption will influence the accuracy of the flow velocity a little but it is not 

affect the examination of the effectiveness of our new velocity extraction method. During the 

simulation we fix the positions of these four rows of particles on each side. 

The values of the parameters used in the calculations are: the size of particles σf = σw = 3.4x10-10 

m; the mass of the particles mf = mw = 6.69x10-26 kg; the temperature T = 84K; the interaction strength 

parameter between argon molecules is εf = 1.657x106 kg·m-1·s-1. In the above, the subscript f represents 

fluid and the subscript w represents solid wall. In our simulations, the size of each time step is chosen 

as ∆t = 10-16 s. In many papers ∆t = 10-14 s is recommended, but to ensure our linearized algorithm is 

stable ∆t = 10-16 s is necessary. In principle, we can use different interaction strength parameters εw to 

represent different solid wall materials [24, 27]. We used εw = 3εf in our simulations. The interaction 

strength parameter for the interaction between a wall particle and a fluid particle εwf can be evaluated 

[24, 27] by εwf = (εfεw)½. In all the simulations the density number is 0.82, corresponding to the liquid 

density of argon at T=84 K.    

We calculated two different cases with different channel heights. For the first case, L=13.61nm; 

h=2.31 nm; N=243. For the second case, L=13.61 nm; h= 4.36 nm; N=459. The velocity profiles 

calculated in our simulations for these two cases are plotted in Figures 2-5.  

Because in this new method the total flow velocity ve is the linear accumulation of velocity 

increment of each time step we call it the LA method. The traditional method is based on the idea of 

time average, we call this the TA method. Figure 2 shows the simulation of case 1. In this simulation 

the equivalent acceleration in the flow direction is 1013 m·s-2 and the simulated maximum velocity 

which is calculated in the x direction by the method of this paper (the LA method) is 39.9 m·s-1. The 

MDS result where the velocity is calculated by the traditional method (TA method) is also shown in the 

Figure. Because the velocity is big both the TA and LA methods can be used to calculate the flow 

velocity. Figure 3 is another example of case 1, where the pressure difference is smaller. The 

equivalent acceleration in the flow direction is 109 m·s-2 and the maximum velocity in the x direction is 

3.92x10-3 m·s-1.Because the flow velocity is much smaller than the thermal velocity, the traditional 

method (TA method) is not available, but, as shown in the Figure, the LA method proposed in this 

paper is still effective. Figure 4 shows the simulation of case 2. In this simulation the equivalent 
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acceleration in the flow direction is 1012 m·s-2 and the maximum velocity in the x direction is 13.92 

m·s-1. Figure 5 is another example of case 2, where the equivalent acceleration in the flow direction is 

108 m·s-2 and the maximum velocity in the x direction is 1.37x10-3 m·s-1. In Figure 3 and Figure 5 we 

can only get results for the LA method because in these simulation situations or for such small flow 

velocities the TA method is not available. In fact, when we simulated the same problems with the TA 

method under the same conditions as in Figure 3 and Figure 5, the maximal flow velocity is always 

great than 2 m·s-1. Certainly this is not the correct solution of the problems. Up to now, we have not 

found any algorithm which can be used to solve such a low velocity nanoscale flow problem. That is 

why the LA method is important for low flow velocity problems. However, we can compare the results 

of TA and LA methods for high flow velocity cases, as shown in Figure 2 and Figure 4. Because, in 

principle, the LA method can be used for both high and low flow velocity problems the conclusions 

obtained from the high flow velocity comparisons can be extended to low flow velocity problems.  

 

Figure 2. Poiseuille flow simulations of case 1 (high flow velocity simulations). The 

vertical coordinate is the flow velocity and the horizontal coordinate is the 

height of the channel.  is the result of this paper (LA ).  is the result of 

the traditional (TA) method.  

 
Figure 3. Poiseuille flow simulations of case 1 (low flow velocity simulations).  is 

the result of this paper (LA ).  
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Figure 4. Poiseuille flow simulations of case 2 (high flow velocity simulations).  is 

the result of this paper (LA ).  is the result of the traditional (TA) method. 

 

                    
Figure 5. Poiseuille flow simulations of case 2 (low flow velocity simulations).  is 

the result of this paper (LA ). 

 
These numerical examples demonstrate that the velocity extraction method proposed in this paper 

is a suitable approach for both low and high speed flow problems. When the flow velocity is big the 

result of LA method is the same as the result of TA method. When the flow velocity is small TA 

method is not available we have to use LA method to extract ve. 

 

Convergence and Efficiency analysis 
 

In this new algorithm, we only used the linear terms of the development of the force function with 

respect to e
ij∆r  to approximate the force increment caused by the external conditions. What is the 

influence of the truncate errors of this approximation? Is it convergent and what are the conditions of 

convergence? These are the questions which should be answered for a reliable algorithm. We do a 

series of simulations with different size of time step from ∆t = 10-14 s to ∆t = 10-18 s. We find that when 

∆t = 10-14 s the simulation of our new velocity extraction method is not good. This means for the linear 

approximation the size of time step should be smaller. If the time step is big the smallijr∆  assumption 

will be broken. When ∆t = 10-18 s the result is almost the same with the result of ∆t = 10-17 s. So we 

have reason to believe that when ∆t = 10-17 s the simulation is already convergent. We show the 

simulation results with time step size from ∆t = 10-15 s to ∆t = 10-17 s in Figure 6. From this figure we 

see that when ∆t = 10-15 s the simulation result is far from convergence and when ∆t = 10-16 s we obtain 
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a quite satisfactory result. If we let ∆t = 10-17 s the result is only improved a little, so for practical 

applications, the recommended time step size is ∆t = 10-16 s.  

 

Figure 6. Comparison of simulation results with different∆t (LA Method). Low flow 

velocity simulations of case 2. The vertical coordinate is the flow velocity and 

the horizontal coordinate is the height of the channel.  

 
Figure 7 is the analysis of the error of the maximal flow velocity when the size of the time step is 

changed (LA Method). The simulation conditions are the same as the simulations in Figure 4. The 

vertical coordinate is the error of the maximal flow velocity TAmaxTAmaxLAmax v)vv( − 100% and 

the horizontal coordinate is size of the time step t∆ (s), where vmax LA is the maximal velocity of this 

paper and vmax TA is the maximal velocity of TA method.  

 

Figure 7. Illustration of the relationship between the error of the maximal flow velocity 

and the size of the time step (LA Method).   

 
Although the purpose of this new method is to extract the low flow velocity caused by the external 

conditions, which the conventional MDS method can not do, the efficiency of an algorithm is always 

an important part to be considered. In our new method we use ∆t = 10-16 s. For the similar problems, in 

conventional MDS methods, ∆t = 10-14 s is usually used. Because in this new method we do not need 

extra iterations to calculate the flow velocity, even 100 times smaller time step size is used, the total 

number of time steps is still less than that of the conventional MDS method. The simulation software 

was executed on a Pentium 2.8GHz PC. We compared the CPU time and the number of time steps as 

follows. In Figure 2, we used 89800 time steps (51 minutes CPU time) for LA method and 3.2x105 

time steps (108 minutes CPU time) for the TA method; in Figure 4, we used 288400 time steps (565 
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minutes CPU time) for the LA method and 7.8 x105 time steps (1022 minutes CPU time) for the TA 

method. The efficiency of the new method is evident. 

 

Conclusions 
 

Using this method we can separate very small ve from the total velocity. It is very useful because in 

many cases we are more interested in the real movement of the medium. The new algorithm is also 

efficient compared to the traditional way. Because we do not need so many extra iterations as we 

usually do the new algorithm can reach a stable solution faster. This is important because usually the 

MDS use so much computation time that the number of particles is limited.   

In this paper only the steady Poiseuille flow is simulated. Because, in this method, we do not use 

the time average algorithm the velocity computation is totally coincidence with the real transient state 

so the dynamic effective can be exhibited exactly. Hopefully this method will be suitable to simulate 

transient phenomena. It will be our later work. This method is also valid in other MDS problems where 

ve is important. In fact, in many MDS problems we want to know the small change of velocity caused 

by the exerted external conditions. The method will provide us a good way to solve this kind of 

problems.  
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