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Abstract: We have isolated ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCO) 

from the red algae Galdieria Sulphuraria. The protein crystallized in two different crystal 

forms, the I422 crystal form being obtained from high salt and the P21 crystal form being 

obtained from lower concentration of salt and PEG. We report here the crystallization, 

preliminary stages of structure determination and the detection of the structural phase 

transition in the P21 crystal form of G. sulphuraria RUBISCO. This red algae enzyme 

belongs to the hexadecameric class (L8S8) with an approximate molecular weight 0.6MDa. 

The phase transition in G. sulphuraria RUBISCO leads from two hexadecamers to a single 

hexadecamer per asymmetric unit. The preservation of diffraction power in a phase 

transition for such a large macromolecule is rare. 
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1. Introduction  
 

In eukaryotic photosynthetic organisms, CO2 assimilation (fixation) is carried out by a series of 

biochemical reactions (the Calvin cycle) that take place in chloroplasts [1]. This biochemical cycle is 

subdivided into three stages. In stage one, a CO2 molecule is incorporated into a five-carbon backbone 

of a ribulose-1,5-bisphosphate that is cleaved into two molecules of phosphoglyceric acid. In stage two, 

three carbon backbone moieties, created in stage one, are handled and streamlined into other 

biochemical pathways. In stage three, a pentacarbon substrate is regenerated. In essence, the whole act 

of CO2 incorporation is carried out in stage one by the enzyme ribulose-1,5-bisphosphate 

carboxylase/oxygenase (RUBISCO, E.C. 4.1.1.39). This enzyme is one of the most abundant proteins 

in our biosphere, and it is mostly responsible for the biomass creation. It catalyzes the carboxylation 

reaction in which the CO2 is added to the C2 of ribulose-1,5-bisphosphate. Subsequently, the 

hexacarbon intermediate is cleaved forming two 3-phosphoglycerates [2]. These simple sugars can be 

utilized in several ways including glycolysis (energy production), storage (starch production) or 

regeneration of the initial substrate ribulose-1,5-bisphosphate. The enzyme can also incorporate O2 and 

produce 3-phosphoglycerate and 2-phosphoglycolate. This second reaction is considered parasitic and 

diminishes the overall rate of CO2 fixation. This particular species of algae has a high specificity ratio 

for the CO2/O2 incorporation and should provide insights into the molecular origin of specificity and 

slow catalytic turnover rate.  

RUBISCO from higher plants, as well as from cyanobacteria, red algae and some photosynthetic 

bacteria, forms a hexadecameric structure, built out of eight large and eight small subunits. The 

molecular weight of a large subunit is around 55kDa, while a small subunit is ~ 16kDa. The three-

dimensional structure of RUBISCO’s from several species of plants, as well as from more primitive 

organisms, have been elucidated by X-ray crystallography. The large subunit containing the active site 

is folded into the α/β (TIM) barrel, and the small subunit has an α + β fold. The small subunit seems to 

play mostly a structural role in the assembly of this large molecule, although recent reports have also 

suggested some catalytic role, especially in the selectivity towards the CO2. The genes for both 

subunits of G. sulphuraria RUBISCO are coded by the chloroplast DNA. This is in contrast to 

RUBISCO from plants (e.g. tobacco) where the gene for small subunit is usually coded by the nuclear 

DNA. Its nuclear location in most species is probably the reason for a higher sequence divergence of 

the small subunit, especially when compared to that from higher plants. 

X-ray crystallography provides a wealth of structural information about the different stages of 

RUBISCO catalysis. Structures of the unactivated enzyme [3], the activated one with metal ions and 

transition state analog [4], the structures with substrate analogs [5] as well as products are available in 

the PDB. A few years ago, the structure of RUBISCO from a similar species G. partita was solved and 

published [6]. However, structural details of activation were not fully described nor the catalytic cycle 

fully elucidated [7].  

In order for the enzyme to carry out its catalytic mission, it needs to be activated by addition of one 

molecule of CO2 to a crucial Lys residue. The active site Lys must be carbamylated to provide an 

essential ligand for binding of the metal ion. This activation process in plants is mediated by 

RUBISCO activase [8] that facilitates the release of blocking agents. It may also happen 

nonenzymatically, by the prolonged exposure to higher levels of CO2. In an activated enzyme, the 
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substrate is directly coordinated to the metal ion. It is believed that the second CO2 molecule is 

transiently coordinated to the metal ion. In the proposed reaction, the metal ion provides necessary 

polarization to activate the CO2 molecule, while the carbamyl moiety plays the role of a base in the 

reaction. The catalytic mechanism was investigated by a number of biochemical methods such as: 

isotope exchange, NMR and fast kinetics, as well as by computational methods. The results were 

summarized by several reviews; one notable that summarizes the kinetic mechanism is by Cleland et. 

al. [7].  

The red algae G. sulphuraria (previously known as Cyanidium caldarium, Allen strain) appears to 

be an old organism with a large capacity to adapt to different environments. It can be found in almost 

every hot spring around the globe and can grow under very diverse conditions that include significantly 

changed gaseous environments (anaerobic) and varied temperatures (20-50°C). It is an extremophile 

that prefers acidic conditions (pH ~2) and achieves optimum growth at 42°C, but can dwell at pH=0 

and higher temperatures [9].  

The large subunit of RUBISCO from red algae G. sulphuraria has 493 amino acids while the small 

subunit has 138 amino acids [10]. The structure of RUBISCO from this species is interesting since the 

attempts to reengineer the specificity of RUBISCO towards a more selective enzyme that would 

suppress or eliminate the oxygenase activity have been unsuccessful [11]. The red algae may hold great 

promise in environmental remediation, especially in the era of global warming caused by green-house 

gasses (e.g. CO2), because red algae RUBISCO was proven to have the highest specificity toward CO2 

[12]. 

 
2. Results and Discussion  
 

2.1 Structure solution and the architecture 

 

We purified G. sulphuraria RUBISCO from algae cultured in the laboratory following the 

published procedures [13]. The protein proved to be heat stable and structurally stable under 

refrigerated conditions. It was possible to crystallize the enzyme from samples that were stored at 4°C 

for a few years after purification. Large crystals of an unusual lens-like morphology were obtained 

from the high salt condition at pH~7. The crystals diffracted to ~2Å resolution and the diffraction 

pattern suggested the I422 space group as seen before in other RUBISCO crystals [14]. The structure 

was solved by the molecular replacement technique using the structure of spinach RUBISCO as a 

probe model. The spinach RUBISCO was used because the crystals for the form 1 were obtained and 

their structure solution was carried out, before the structure of RUBISCO from a G. partita was 

published and available. RUBISCO from the red algae G. sulphuraria. belongs to the hexadecameric 

class (L8S8), and the approximate molecular weight of the entire assembly is ~0.6 MDa. The general 

organization of the enzyme is very similar to that observed for other hexadecameric RUBISCO 

structures from plants.  The asymmetric unit contained large and small subunits of RUBISCO. The 

entire hexadecameric molecule is obtained by application of the crystal symmetry. The hexadecamer 

was positioned in such a manner that the internal 422 symmetry coincided with that of the lattice. Such 

an arrangement resulted in neighboring hexadecamers being aligned. 
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The initial solution indicated that the small subunit architecture was significantly different from 

that of higher plants. That observation agrees with the genetic data indicating that the small subunit of 

this species is also coded by the chloroplast DNA, in opposition to plants in which the small subunit is 

coded by the nuclear DNA.  When eventually RUBISCO from G. partita became available, it turned 

out that the small subunit architecture is very similar in this closely related species. The sequence 

deviation of G. sulphuraria from G. partita is low (~97% identity in the large subunit and 90% identity 

in the small subunit). The extended β-sheet of the small subunit, not present in higher plants 

RUBISCO, forms an eight-stranded beta-barrel around a fourfold axis [15]. 

 
Figure 1. Images presenting morphology for both crystal forms: (A) crystal form 1 

(I422), (B) crystal form 2 (P21). 

 

 

 

 

 

 

 

   

     A           B 

 

In our search for better conditions to activate RUBISCO, we initiated new crystallization trials that 

resulted in the second crystal form. This crystal form was obtained from a lower ionic strength 

condition, with PEG 4000 as a precipitant. Large rectangular prism crystals (maximal dimension ~0.7 

mm) showed a monoclinic system with the P21 space group. Apparently, the asymmetric unit contained 

the entire hexadecamer. The difference in morphology between the I422 and P21 crystal forms can be 

seen in Figure 1. An independent view of each active site in the hexadecamer of this new crystal form 

(unaveraged by internal symmetries as it happens in the crystal form 1) might allow for a more detailed 

observation of changes upon the activation process in the crystal.  

 

2.2 Structural phase transition in the P21 crystal form  

 

The diffraction images of the monoclinic crystal showed a strong ring-like pattern, characteristic of 

imperfect glassification of solvent. To clear the diffraction images from this artifact, we took the frozen 

crystal, bathed it in fresh cryoprotecting buffer and froze it again in an N2 stream. The single crystal 

diffraction pattern was obtained, but with visible changes. The diffraction pattern before and after the 

freeze-thaw cycle is presented in Figure 2. The changes in diffraction pattern upon data collection and 

successful indexing convinced us that we detected the structural phase transition. Presently, all three 

structures are undergoing detailed refinements, the results of which will be published separately. 
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Figure 2. Representative examples of diffraction images for both P21 crystal forms: (A) 
crystal form 2a, (B) crystal form 2b. The resolution at the edge of the frame corresponds 

to d~2Å. The maximal resolution of form 2a extends to ~2.4Å, while for form 2b to 
~2.7Å. The insets show the arrangement of the lattices and the approximate relationships 

between the reciprocal distances. 

A 

B 



1044 
 

 

We focus here on the differences between different crystal forms. In the I422 crystal form, the 

hexadecamers were tightly aligned with side to side contacts resulting in 39.2% of solvent content 

(assuming the molecular weight of the small and the large subunit 71193 Da). In both P21 crystal forms 

the hexadecamers were staggered, which led to a much higher solvent content of ~47%. We inferred 

that the phase transition in the P21 crystal form was associated with the changes related to thawing, 

bathing in fresh cryoprotectant and freezing again. The differences in packing and the postulated 

relationships between the lattices are shown in Figures 3, 4 and 5. Figure 3 represents steroscopic 

projections of the self-rotation function. While the pattern in Figure 3A is self-evident, with internal 

symmetry elements overlapping with the crystal symmetry of the I422 space group, the interpretation 

of plots in 3B and C is more complex. Figure 5 helps in correlating the crystallographic X and Z 

directions with that of internal symmetries of the assembly in different crystal forms. Figure 3B 

confirms the deviation of the twofold axis of the hexadecamer from the X direction by around 20°, 

while figure 3C shows an almost perfect alignment of the twofold axis with the X direction. 

 
Figure 3. Plot of self-rotation function for all crystal forms of RUBISCO: (A) crystal 
form 1, (B) crystal form 2a, (C) crystal form 2b. Please note the presence of dominant 

features coinciding with crystallographic axes in the highly symmetric I422 crystal form, 
and the presence of multiple off-axis symmetry elements in lower symmetry P21 crystal 
form. The peaks indicate the change of the direction of the a axis in different forms and 

suggesting the alignment of hexadecamers in form 2b. 

 

 
A     B     C 

 

After having solved the phase problem, we inspected the models in both P21 crystal forms. Our 

cursory inspection showed that the centers of gravity of the hexadecamers did not change noticeably. 

Apparently, the hexadecamers in form 2b rotated in such a manner that they became aligned against the 

major crystal axis, and their four-fold axes lined up approximately with the Y direction. This fact led to 

the reduction of dimensions of the crystal lattice. Noticeable is a small reduction in the b axis while the 

relationship between the a and c axes stays in proportion to the relationship of the surfaces spanned by 

the a, c vectors. According to the construction presented in Figure 5, the surface of the ac face of the 

new cell should be approximately half of the old cell, what is also equivalent to that the a' and c' are 

approximately equal to half-diagonals of the ac-face of the original cell. This relationship can be 
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expressed as a cross product of the a×c vectors, that can be further expressed in scalar values as  

a c sinβ ≈ 2 a' c' sinβ'. The global change in packing leads to the ~1% reduction in the solvent content. 

The difference between the packing schemes is not only in the presence of the second hexadecamer 

in the asymmetric unit, but also in mutual positioning of the nearest neighbors. We present the 

difference in the general packing models in Figure 4. The analysis of both crystal forms showed that 

the second hexadecamer underwent a small rotation (~3°) around the axis positioned in the ab plane. 

The change is best visualized by superposition of two independent hexadecamers of form 2a onto the 

single hexadecamer of form 2b (Figure 4d). The effective rotation of the second hexadecamer by ~3° 

results in aligning the molecules what leads to a smaller unit cell and reduced contents of the 

asymmetric unit. 

 
Figure 4. Packing diagrams for both crystal forms of RUBISCO: (A) I422 crystal form 

(large and small subunit in yellow) (B) P21 crystal form 2a, (C) P21 crystal form 2b. 
Please note similarities in packing, despite the difference in the cell dimensions and 
contents of the asymmetric unit (hexadecamers in yellow). (D) Comparison of both 

crystal lattices represented by superposition of the two independent hexadecamers of the 
form 2a (in purple) onto the single hexadecamer of form 2b (yellow). The effective 

rotation of the second hexadecamer by ~3° results in aligning them and the reduction of 
the asymmetric unit. 

 
A         B 
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Figure 4. Cont. 

C        D 

 
There are only few cases of structural phase transitions reported in the protein crystallography 

literature. Several systems like lysozyme [16] or factor XIII [17] were reported to undergo the 

structural phase transition and both phases were described in detail. Two more papers are worth 

mentioning in this context, in which changes in salt contents causing the phase transition are described 

[18, 19]. In those systems the main cause of changes in the structure was associated with the change in 

the water content of the crystals.  

We report here the structural phase transition in the P21 crystal form of G. sulphuraria RUBISCO. 

The phase transition in this system leads from two hexadecamers to a single hexadecamer per 

asymmetric unit. The reason for the structural change is not entirely clear, because the free energy 

needed to move such large objects (~0.6MDa) relative to each other is not negligible. We are presently 

pursuing experiments aiming at clarifying the primary cause of the transition. The literature provides 

several examples of possible transition mechanisms [16,17,20]. Most likely it is the change of water 

content caused by the freeze-thaw cycle. Indeed, there is a slight change in water content between the 

two crystal forms of around 1%. The change is minimal but it might be indicative of a change in salt 

content while the freezing cycle introduces some residual strain.  

The observation of the structural phase transition provides interesting implications. Apparently, 

RUBISCO, a very large macromolecular assembly, can survive the freeze-thaw cycle, providing that 

the molecule is sufficiently tightly packed to withstand rapid freezing. The hexadecameric molecules 

interact weakly in the original crystal lattice, thus the reorganization of the lattice does not break 

internal symmetries of the assembly. The phase transition for such a large macromolecule without loss 

of diffraction power is rare, testifying to the structural stability of this ancient protein. In conclusion, 

crystallization of G. sulphuraria RUBISCO will allow us to pursue the details of activation and 

possibly, further details of the catalytic mechanism.  
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Figure 5. Schematic representation of the primary P21 lattice (the unit cell in blue) 
containing two hexadecamers (black and red squares) in the asymmetric unit is shown. 
The postulated transition of the 2a crystal form (the blue cell) into the 2b crystal form, 
(the green cell), that proceeds through the hexadecamer rotation is marked by the arrow 

on the left. The corresponding symmetry elements are in black and dark green.  The 
overlapping elements are in both colors. The relationships presented here are 

approximate. 
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3. Experimental Section  

3.1 Materials 

The live cells were gift of Dr. R Troxler (Boston University Medical School). Reagent grade 

chemicals were purchased from SIGMA. 

3.2 Cell Growth 

The cells were grown in two stages: a glycolytic-dark stage (rapidly dividing) and a photosynthetic-

light stage (a greening stage). They were grown in minimal media containing dextrose (10g/L) enriched 

with a cocktail of micronutrients (Na, K, Mg, Ca in high µM range, V, Mo, Co, Cu, B in low nM 

range) at pH 2. The cells after having grown in dark phase for 10 days were spun down and washed 

with buffer without dextrose. Then the cells were re-suspended in the same medium without the 

dextrose and exposed to white light for a period of at least 10 days. The cells when harvested were dark 

green. A small volume of cells collected after dark stage were mixed with 20% glycerol and stored 

frozen for later use at -80 °C. 
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3.3 Purification 

The cells, collected after the greening stage, were centrifuged at 25,000 × g for 30 min. The cell 

pellet was re-suspended in a small volume of the breaking buffer (100 mM Tris, 10 mM NaCl, pH 8) 

and opened by sonication. The cell debris was isolated by centrifugation and the supernatant separated. 

Subsequently, the soluble proteins were precipitated in 50% saturated solution of ammonium sulfate. 

The precipitate was re-suspended and dialyzed against pure water for 24 h.  The first chromatographic 

step was carried out on a brushite column (Ca2PO4). The protein was eluted with the gradient of the 

phosphate buffer (5 mM to 100 mM, pH 8.0). The selected fractions containing colored proteins were 

precipitated by 50% AS and dialyzed against pure water. The sample applied on the Biogel-A DEAE 

ion exchange column was eluted with the gradient of 30 mM to 300 mM NaCl (pH 7.5). The colored 

proteins separated from the main non-colored peak, eluted at approximately 100 mM NaCl. The non-

colored peak was confirmed by gel electrophoresis to be RUBISCO. The collected protein fractions 

encompassing major peaks were combined and dialyzed against 0.01 mM phosphate buffer at pH 7.5 

and stored at 4 °C. 

3.4 Crystallization 

Concentrated protein (~11 mg/mL) was crystallized using the hanging drop vapor diffusion 

method. The ammonium sulfate variable concentration screen was used. Concentrations ranging from 

20% to 60% v/v saturated AS at three pH values (6, 7, 8) were tried. The sample containing 5 µL 

solution of ~11 mg/mL protein in 0.01 M phosphate buffer mixed with 5 µL of 50 mM phosphate 

buffer (pH = 7.5) containing 55% v/v AS yielded crystals of the form 1. The crystal of form 1 had a 

very unusual shape (resembling the optical lens, Figure 1a) and took longer time to grow 

(approximately 1 month) than the form 2. The crystals of form 2 were initially obtained by screening 

with the HAMPTON crystal screen 1. The optimization of crystallization conditions led to the 

conditions in which the protein suspended in phosphate buffer was mixed with 25% v/v AS and 12% 

w/v PEG 4000, yielding large crystals for the crystal form 2 (Figure 1b). The crystals usually grew 

within 1-2 weeks to typical dimensions of 0.2 x 0.2 x 0.3 mm, in the shape of a square pyramid. The 

crystals of form 2 were harvested, stabilized in the cryoprotectant containing 50% w/v AS and 20% 

w/v glycerol. They were suspended in a nylon loop and frozen in N2 gas stream at 100K for data 

collection.   

3.5 Data Collection 

The initial crystal characterization and data collection on the crystals of form 1 was carried out on 

an old multiwire area detector MarcII (Multiwire Area Detector Systems, Poway, CA) at room 

temperature. The first data set was used for structure solution. The second data set was collected later 

at 100 K on the Rigaku RaxisIV++ area detector system mounted on the MicroMax 007 rotating anode 

generator operated at 40 kV and 20 mA and processed with HKL2000 [21]. The system is located at 

the Chemistry Department, University of Texas at El Paso. The data clearly showed high symmetry 

space group I422 with the diffraction extending to ~2 Å resolution.  

The images for the second crystal form showed diffraction to approximately ~2.4 Å resolution 

(Table 1). The crystal system for the form 2 was monoclinic with the space group P21, as determined 
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by the analysis of systematic absences.  The X-ray data for both crystal phases of form 2 were collected 

at 100 K. The diffraction data for the form 2 were collected on the same equipment, as described for 

form 1.  The data were processed with HKL2000.  

Table 1. X-ray data collection statistics and contents of the asymmetric unit for I422 and 

both P21 crystal forms.  

Crystal form 1 2a 2b 
Space group I422 P21 P21 

Cell dimensions (Å) 
a 
b 
c 
ββββ    

 
136.9, 
136.9, 
122.9, 
90.0 

 
124.7, 
214.6, 
197.5, 
94.7 

 
111.8, 
212.3, 
120.4, 
116.9 

Resolution (Å) 37-2.0 34-2.4 34-2.8 

Rmerge*  0.075(0.41) 0.114(0.52) 0.146(0.39) 

I/ σσσσ(I) 7.2(2.1) 4.2(1.8) 3.7(1.9) 

Redundancy 6.1(3.1) 2.3(1.7) 1.9(1.7) 

No. reflections 37654 269663 99767 

Completness (%) 89.3(81.0) 85.7(83.2) 79.7(79.2) 

No. atoms placed in the 
asymmetric unit 

6224 74224 37112 

*The highest resolution shell in parenthesis. 

After the first successful data set collection and data reduction for the monoclinic form, we decided 

to eliminate the background coming from imperfect cryoprotection. We thawed the crystal, bathed it in 

fresh stabilizing solution and froze again in the cold stream. To our surprise, we saw a strong yet 

different diffraction pattern (Figure 2). This new pattern suggested an internal change in the crystal 

packing. We collected a second data set using the same crystal. The data reduction showed a change in 

cell dimensions with preservation of monoclinic system (Table 1).  

3.6 Molecular replacement 

The phase problem for both crystal forms was solved using molecular replacement. The structure 

for the first crystal form was solved by molecular replacement as implemented in CNS [22] using 

spinach RUBISCO as a template (1AUS). The cell dimensions as well as the symmetry suggested a 

single large and a single small subunit in the asymmetric unit. The initial solution was unique, taking 

into account the high symmetry of the lattice with the signal to noise ratio for rotation function of 15.8 

sigma remaining peaks around 3 sigma (R factor ~0.5). The translation solution was unique and fixed 

by the internal symmetry of the assembly.  The initial placement was followed by a long process of 

establishing the correct sequence. Only in the last two years with advances in sequencing technologies 

the unique sequence for Galdieria sulphuraria RUBISCO emerged. The initial fit with Cyanidium 

caldarium sequence (~86% identity, large subunit and 63% identity, small subunit) showed many 

mismatches that turned out to be sequence changes between three closely related species of Galdieria 

partita, Cyanidium caldarium and Galdieria sulphuraria. When the search was conducted with the G. 
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partita model, the rigid body refinement lowered the R factor to 0.39 thus confirming the solution 

obtained before. 

The phase problem for the crystal form 2a was solved by MR with G. partita model as a template 

(1IWA) using the CNS [22]. The cell dimensions suggested that two hexadecameric molecules were 

present in the asymmetric unit. The self-rotation function suggested that the fourfold axis of the 

hexadecamers were close to the Y axis while both hexadecamers were rotated against each other 

(Figure 3). Indeed, two hexadecamers were located in the asymmetric unit with the resulting R factor 

of 0.49. The initial rotation function produced eight peaks approximately 30 sigma above the noise 

level, while the next peaks on the list were at the level of 5 sigma. All those peaks were equivalent by 

non-crystallographic 422 symmetry. We are presently continuing the refinement of the initial model 

because the ~10,000 amino acid contents of the asymmetric unit makes it a formidable technical task. 

We are working on implementing effective refinement strategies. 

A similar process to solve the phase problem was carried out for the second monoclinic form using 

the same model of G. partita RUBISCO. As suggested by the cell dimensions, only a single 

hexadecamer was located in the asymmetric unit. The highest peaks were again above 30 sigma and R 

~0.45, indicating the correctness of the solution. The self-rotation function clearly showed that a major 

fourfold axis was positioned as in form 2a along the Y direction while the perpendicular two-fold 

symmetry axis was aligned with the X direction. The simplification of the self-rotation function 

combined with detected directions of two-fold axes when compared to form 2a was consistent with the 

presence of a single hexadecamer in the asymmetric unit.  
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