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Abstract: The sarcomere is the fundamental unit of cardiac and skeletal muscle 
contraction. During the last ten years, there has been growing awareness of the etiology of 
skeletal and cardiac muscle diseases originating in the sarcomere, an important evolving 
field. Many sarcomeric diseases affect newborn children, i. e. are congenital myopathies. 
The discovery and characterization of several myopathies caused by mutations in myosin 
heavy chain genes, coding for the major component of skeletal muscle thick filaments, has 
led to the introduction of a new entity in the field of neuromuscular disorders: myosin 
myopathies. Recently, mutations in genes coding for skeletal muscle thin filaments, 
associated with various clinical features, have been identified. These mutations evoke 
distinct structural changes within the sarcomeric thin filament. Current knowledge 
regarding contractile protein dysfunction as it relates to disease pathogenesis has failed to 
decipher the mechanistic links between mutations identified in sarcomeric proteins and 
skeletal myopathies, which will no doubt require an integrated physiological approach. The 
discovery of additional genes associated with myopathies and the elucidation of the 
molecular mechanisms of pathogenesis will lead to improved and more accurate diagnosis, 
including prenatally, and to enhanced potential for prognosis, genetic counseling and 
developing possible treatments for these diseases. The goal of this review is to present 
recent progress in the identification of gene mutations from each of the major structural 
components of the sarcomere, the thick and thin filaments, related to skeletal muscle 
disease. The genetics and clinical manifestations of these disorders will be discussed.  
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1. Introduction 

During the past decade, major advances have been made in defining the molecular basis of many 
genetically transmitted diseases. During this period, there has been growing awareness of the 
importance of sarcomeric protein mutations in the etiology of myopathy. Numerous mutations are 
currently associated with myopathy, with remarkable spectrum of phenotypic variation. In addition to 
a better understanding of the primary defect and basic molecular pathogenesis of disease, redefining 
the diagnostics of many disorders is another benefit of identifying the disease genes. These 
fundamental approaches will allow us to understand why a point mutation at one site in a sarcomeric 
protein (e.g. tropomyosin (TM)) leads to nemaline myopathy (NM), while a different point mutation 
causes distal arthrogryposis (DA). Improved understanding of the molecular basis of disease will 
probably allow targeting of pharmacological strategies as well as providing the cornerstone for gene 
therapy approaches.  

In this review, disorders caused by mutation of sarcomeric thick and thin filament proteins will be 
discussed. 

2. The Sarcomere 

The sarcomere represents the basic contractile unit of both skeletal and cardiac muscle. It is a highly 
ordered structure composed of the thin and thick filaments, titin, and nebuline [1]. The characteristic 
striated appearance of muscle fibers is observable by electron microscopy as alternating light (I) and 
dark (A) bands (Figure 1). The principle components of striated muscle sarcomeres include parallel 
arrays of actin-containing thin filaments that span the I-band and overlap with myosin-containing thick 
filaments in the A-band. The thin filaments are anchored in the Z-disc and the thick filaments are 
similarly anchored in the M-band [1]. 

Figure 1. a) Ultrastructurally, the A-band corresponds to the thick filaments and includes a 
zone where the thin filaments overlap the thick filaments. The I-band is the zone in which 
the thin filaments do not overlap the thick filaments. The Z-line is a dark band in the centre 
of the I-band and the M-line runs down the center of the A-band. 
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Skeletal muscle function depends on a precise alignment of actin and myosin filaments. This is 
achieved by accessory proteins, such as α-actinin, myomesin, M-protein, titin, desmin and myosin-
binding proteins (MyBP)-C and -H, which link the different components and keep them aligned with 
each other [1] (Figure 2). The major component of the Z-line is α-actinin, which acts as an actin cross-
linking protein and holds actin filaments in a lattice arrangement in the Z-disc [2, 3]. It has been 
proposed that myomesin and M-protein may connect titin and myosin filament systems and that 
myomesin plays a role in integrating thick filaments into assembling sarcomeres [4]. Titin, a huge 
protein which runs parallel to the filament array, forms a continuous filament system in myofibrils [1]. 
Desmin is the predominant intermediate filament protein of striated muscle [5] and contributes to 
maintaining the integrity and alignment of myofibrils [1]. MyBP-C is localized in seven stripes 
running parallel to the M-band (Figure 2). Because MyBP-C interacts with both the thick and titin 
filaments, its function may be to link them together and/or to align the thick filaments in the A-band 
[1]. In addition, MyBP-C reduces the critical concentration for myosin polymerization and the 
resulting filaments are longer and more uniform in length than those polymerized in its absence [6, 7]. 
Both myosin-binding proteins appear to aid in the assembly of vertebrate muscle thick filaments into 
their precise lengths [1]. It has also been suggested that MyBP-C and –H may be involved in 
regulating muscle contraction [8].  

Figure 2. Illustration of the I-band, A-band, and M-line regions of the sarcomere. The thin 
filaments contain actin, tropomyosin, troponins C, I, and T and nebulin. The thick 
filaments are composed of myosin with the globular heads forming cross-bridges with thin 
filaments. Myosin-binding proteins, including MyBP-C, are associated with the thick 
filaments. The giant protein titin extend the length of an entire half sarcomere. The M-line 
contains different proteins, such as myomesin and M-protein. 

 

2.1. The Major Component of the Thick Filament: Myosin 

Contraction of muscle is the result of cyclic interactions between the globular heads of the myosin 
molecules, also known as cross-bridges, and the actin filaments. The repetitive binding and release 
results in sliding of the thick filaments along the thin filaments powered by the hydrolysis of ATP. 
Myosin can be regarded as an ATPase that is activated by the binding of actin [9].  

Myosin acts as a molecular motor that converts the chemical energy of ATP hydrolysis into 
mechanical force in eukaryotic cells [10]. Conventional myosin exists as a hexameric protein 
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composed of two myosin heavy chain (MyHC) subunits and two pairs of non-identical light chain 
(MyLC) subunits (Figure 3). The MyHC has two functional domains. The globular, amino-terminal 
head domain, to which MyLCs bind, exhibits the motor function. The elongated alpha-helical coiled-
coil carboxyl-terminal rod domain exhibits filament-forming properties [10]. The globular head that 
forms the cross-bridges contains the binding sites for actin and ATP [11].  

Figure 3. Schematic illustration of a myosin class II molecule, showing the essential light 
chains (ELC) and regulatory light chains (RLC) that wrap around the α-helical region of 
the S1. Two MyHC molecules intertwine via their α-helical regions to form a coiled-coil 
rod. Proteolytic fragments S1, S2 and LMM are indicated. 

 
 

The MyHC can be cleaved by proteolytic enzymes into two subfragments, heavy meromyosin 
(HMM) and light meromyosin (LMM) [12, 13]. The HMM contains the head region, termed 
subfragment 1 (S1), and a portion of the coiled-coil-forming sequence referred to as subfragment 2 
(S2) which connects the myosin heads to the thick filament. The LMM is the C-terminal proportion of 
the rod, which lies along the thick filAMent axis [14] (Figure 3).  

The myosin motor domain is essentially constructed of three domains connected by flexible linkers. 
The 25-kDa amino-terminal nucleotide-binding domain is connected to the upper 50 kDa subdomain 
which is, in turn, connected to the lower 50-kDa subdomain. The third, 20-kDa domain is called the 
converter region (Figure 4). A long helix emerges from the converter domain and serves as the binding 
site for MyLCs. The essential light chains (ELC) occupy the binding site closest to the converter 
domain while the regulatory light chains (RLC) occupy the second site [15]. The binding sites are 
highly specific for their respective MyLCs [14]. The elongated neck region in S1 has been suggested 
to act as a lever arm to amplify small changes in the configuration of the motor domain into much 
larger displacements of actin [15]. 

Six striated muscle MyHCs are encoded by genes found in a tightly linked cluster on human 
chromosome 17 [16, 17]. The genes are arranged in the following order: MYH3, MYH2, MYH1, 
MYH8, MYH13 and MYH4 [18]. Cardiac MyHC isoforms encoded by MYH7 and MYH6 are located on 
chromosome 14 [19]. 

Three major MyHC isoforms are present in adult human limb muscle tissue: MyHC I, also called 
slow/beta MyHC (encoded by MYH7) is expressed in slow, type 1 muscle fibers and in heart 
ventricles; MyHC IIa (encoded by MYH2) is expressed in fast, type 2A muscle fibers and MyHC IIx 
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(encoded by MYH1) is expressed in fast, type 2B muscle fibers [20]. In addition to the common MyHC 
isoforms found in fibers of adult human limb muscles, there are special MyHC isoforms expressed in 
some fibers in specific muscles. For example, very rapidly contracting fibers that express a specific 
MyHC isoform, extraocular MyHC, have been found in extraocular muscles [21-24]. Developing and 
regenerating muscle fibers express special MyHC isoforms, i.e. embryonic (encoded by MYH3) and 
perinatal (encoded by MYH8) MyHC. Embryonic MyHC is normally not expressed in postnatal human 
limb muscles unless there is ongoing muscle regeneration. 

Figure 4. Ribbon representation of the chicken myosin S1 structure. The 25-, 50-, and 20-
kDa segments of the heavy chain are shown as red, green, and purple ribbons, respectively. 
The upper and lower segments of the 50-kDa domain are indicated. The ATP- and actin-
binding sites are shown. This figure was prepared using the program WebLab 
VIEWERLIFE 3.2. 

 

2.2. The Major Components of the Thin Filament: Actin, Tropmyosin, Troponin Complex and Nebulin 

The thin filament is the main site of Ca+2 regulation and is composed of four components in striated 
muscle: actin, TM and troponin (Tn) with its three subunits [25] (Figure 5). 
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Figure 5. Schematic illustration of a part of the sarcomere, the contractile unit of muscle, 
composed of thick and thin filaments. Note that the illustration does not correspond to a 
notion of size. 

 
 

Actin is the principal protein component of the sarcomeric thin filaments. F-actin forms the 
backbone of the thin filament which can be viewed as a two-stranded helical structure [25].  

TM is an actin-binding protein, composed of two α-helical chains forming a rod-shaped coiled-coil 
dimer. TM is one of the regulatory proteins in the thin filament and is localized head-to-tail along the 
length of the actin filament, providing stability; it is essential for myosin–actin interaction [25, 26]. 
Through Ca2+-dependent movement transmitted via the Tn complex, TM blocks or opens the myosin 
binding sites on actin [25]. So far, four different TM genes have been identified in the human genome, 
TPM1, TPM2, TPM3 and TPM4 [26].  

There are three highly homologous major TM isoforms in human striated muscle: α-TM 
(α−ΤΜfast), β-TM and γ-TM (α−ΤΜslow) [26].  

α-TM is a product of the TPM1 gene, β-TM is encoded by the TPM2 gene and γ-TM is encoded by 
the TPM3 gene. The muscle isoform encoded by TPM1 is predominantly expressed in cardiac muscle 
and fast, type 2 muscle fibers. TPM2 is mainly expressed in slow, type 1 and, to some extent, in fast 
muscle fibers and cardiac muscle. TPM3 is predominantly expressed in slow muscle fibers and is also 
expressed in the heart [27]. 

Tn exists as a complex of three component proteins: troponin C (TnC), troponin I (TnI) and 
troponin T (TnT). Each of the three proteins is a regulator of muscle contraction and plays distinct 
roles in the thin filament. TnC is the Ca2+ -binding subunit, TnI is the inhibitory subunit that binds to 
actin and inhibits actomyosin ATPase, and TnT is the TM-binding subunit that links the Tn complex to 
TM [25]. 
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There are two TnC isoforms in human striated muscle, expressed by two separate genes, TNNC1and 
TNNC2 [28, 29]. The product of the TNNC1 gene expressed in slow twitch skeletal muscle is also the 
isoform expressed in heart. The fast skeletal muscle TnC isoform is the product of TNNC2. 

There are three TnI isoforms that are the products of separate genes in human striated muscle: fast 
skeletal TnI is the product of TNNI2, slow skeletal TnI is a product of TNNI1 and cardiac TnI is a 
product of TNNI3 [30]. 

There are three homologous TnT genes that encode specific TnT isoforms in humans: slow skeletal 
muscle TnT (encoded by TNNT1), fast skeletal muscle TnT (encoded by TNNT3) and cardiac TnT 
(encoded by TNNT2) [31, 32].  

Nebulin is a giant filamentous protein extending along the entire length of the thin filament, 
recognized as a length-regulating template of the sarcomeric actin filaments, with single nebulin 
polypeptides spanning the length of the actin filament [33-35]. 

3. Myopathies Involving Thick and Thin Filament Proteins 

During the last decade, several protein components of the thick and thin filaments have been 
implicated in the pathogenesis of muscle diseases: slow/β-cardiac myosin heavy chain (MyHC I), fast 
type IIa myosin heavy chain (MyHC IIa), embryonic myosin heavy chain (MyHC-emb), perinatal 
myosin heavy chain (MyHC-peri), skeletal muscle alpha actin (α-actin), α-tropomyosin slow (γ-TM), 
β-tropomyosin (β-TM), slow TnT, fast TnT and fast TnI. 

Furthermore, there are additional myopathies associated with mutations in the genes coding for 
other proteins of the sarcomere such as titin, desmin and components in the Z-disk, which is not 
included in this review. 

3.1. Disorders-associated Mutations Found in Thick Filament Components 

3.1.1. Myosin Heavy Chains 

Mutation in the sarcomeric motor protein MyHC was first described in 1990 in association with a 
severe form of hypertrophic cardiomyopathy (HCM) [36].  

During the past few years, MyHC mutations have been associated with different skeletal muscle 
diseases including autosomal dominant myopathy with congenital joint contractures, ophthalmoplegia 
and rimmed vacuoles (OMIM #605637), caused by a single point mutation in the fast IIa MyHC gene 
(MYH2) [37]; Laing early onset distal myopathy (OMIM #160500) [38-41] and myosin storage 
myopathy (OMIM #608358) [42-46], caused by different mutations in the slow/β-cardiac MyHC gene 
(MYH7); trismus-pseudocamptodatyly syndrome (TPS) (OMIM #158300), caused by mutation in 
perinatal MyHC (MYH8) [47, 48]; Freeman-Sheldon syndrome (FSS) (OMIM #193700) and Sheldon-
Hall syndrome (SHS) (OMIM #601680), caused by mutations in embryonic MyHC (MYH3) [49].  

3.1.1.1. MyHC IIa 

Mutation of a MyHC gene was not described in association with pure skeletal muscle until 2000 
[37]. This myopathy, also called ‘’Autosomal dominant MyHC IIa myopathy’’ (OMIM #605637), is 
associated with a missense mutation in the MyHC IIa gene (MYH2). Clinical characteristics are 



Int. J. Mol. Sci. 2008, 9 
  

1266

congenital joint contractures, which normalize during early childhood, external ophthalmoplegia and 
predominantly proximal muscle weakness and atrophy. The course is frequently progressive in 
adulthood [50]. The mutation changes a highly conserved, negatively charged glutamate at position 
706 into a positively charged lysine (E706K). The altered amino acid is located in the SH1 helix in the 
core of the myosin head. 

Three additional mutations in the MYH2 gene have later been identified with myopathies in three 
families [51].  

3.1.1.2. Slow/β-cardiac MyHC 

Mutations in the cardiac/β-MyHC gene (MYH7) are a frequent cause of familial hypertrophic/dilated 
cardiomyopathy (HCM/DCM) [52, 53]. More than 190 MYH7 mutations with varying clinical 
penetrance have been described, some with relatively benign effects on life expectancy and others 
associated with a high incidence of sudden death (http://www.hgmd.cf.ac.uk/ac/gene.php?gene=MYH7). 
Despite the knowledge that the slow/β-cardiac MyHC gene is also expressed in slow, type 1 skeletal 
muscle fibers, only a few studies have investigated the involvement of skeletal muscle in familial 
hypertrophic cardiomyopathy patients with identified missense mutations in the MYH7 gene [54, 55]. 

Laing early onset distal myopathy is identified and linked to the MYH7 gene on chromosome 14q11 
[38]. Of the total number of identified mutations associated with this form of distal myopathy, the 
most prevalent are mutations located in the LMM region of the myosin tail of slow/β-cardiac MyHC 
[38-41]; only two cases of distal myopathy with cardiomyopathy have been associated with a mutation 
in the S1 region [56, 57].  

Myosin storage myopathy is an additional myopathy associated with mutations in the MYH7 gene. 
It has been assigned various descriptive terms such as ‘’myopathy with probable lysis of thick 
filaments’’ [58] and ‘’hyaline body myopathy’’ [59, 60]. This myopathy is characterized by 
accumulation of slow/β cardiac myosin (MyHC I) in type I muscle fibers. Myosin storage myopathy 
has so far been associated with four mutations located in the distal rod region of slow/β-cardiac 
MyHC. The Arg1845Trp mutation has been reported in several unrelated cases [42, 44, 45]. This 
mutation has also been reported in cases with scapulo-peroneal myopathy [61]. 

3.1.1.3. Perinatal MyHC 

To date, only one single mutation in perinatal MyHC (MYH8), R674Q, has been associated with 
TPS (OMIM #158300). The mutation has been identified in seven unrelated families with this disorder 
[47, 48]. TPS is a rare autosomal dominant distal arthrogryposis (DA7), characterized by 
camptodactyly of the fingers, apparent only upon dorsiflexion of the wrist (pseudocamptodactyly), and 
inability to completely open the mouth (trismus) [62].  

3.1.1.4. Embryonic MyHC 

DA syndromes are a group of sporadic and/or autosomal dominant disorders. The clinical features 
are multiple congenital contractures, where the hands and feet are tightly clenched and the fingers 
overlap [62, 63]. FSS, the most severe disorder with multiple congenital contractures and severe 
contractures of the orofacial muscles, and SHS, the most common DA, have recently been associated 
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with mutations in the embryonic MyHC gene (MYH3) [49]. All of the MYH3 mutations associated 
with FSS except one are located in the myosin head. Interestingly, 6/20 investigated cases in a study of 
FSS carried an R672 substitution, which is paralogous to the R674 of perinatal MyHC (MYH8) [49]. 
However, the mutations that cause SHS are located throughout MYH3 [49].  

A new study has recently reported novel MYH3 mutations associated with DA and demonstrated 
myopathic changes in muscle biopsy specimens from patients with DA and MYH3 mutations [64]. The 
results of this study add MYH3 to the list of MyHC genes involved in hereditary myosin myopathies. 

3.1.2. Myosin Light Chains 

3.1.2.1. Regulatory Light Chain RLC 

Recent studies have shown that myosin RLC is one of the sarcomeric proteins associated with FHC 
[65-69]. Some of the RLC mutations were shown to be associated with a particular type of FHC, [67] 
whereas others presented with a more classic form of FHC, resulting in increased left ventricular wall 
thickness and abnormal ECG [65, 66, 68, 69]. 

Since the RLC gene (MYL2), like MYH7, is expressed in slow skeletal muscle, skeletal muscle 
biopsies from patients with the Glu22Lys MYL2 mutation exhibited abnormal skeletal muscle 
histology, similar to patients with ragged red fiber (RRF) myopathy [67].  

3.1.2.2. Essential Light Chain ELC 

Mutations in the ELC have been associated with FHC. The pathological phenotypes vary in severity 
but almost all ELC mutations result in sudden cardiac death at a young age [70].  
The MYL3 gene encodes the slow skeletal and the ventricular ELC (ELCv) isoforms, whereas the 
MYL4 gene encodes atrial ELC (ELCa) [71]. Morphological analyses of skeletal muscle biopsies from 
patients with FHC associated with the Met149Val MYL3 mutation also revealed a similar RRF 
histology [67]. 

3.2. Disorder-associated Mutations Found in Thin Filament Components 

3.2.1. Actin 

Mutations in the skeletal muscle alpha actin gene (ACTA1) have been associated with various 
skeletal muscle diseases, including actin myopathy (accumulation of actin), NM, intranuclear rod 
myopathy and congenital fiber type disproportion (CFTD) [72-74]. To date, more than 80 different 
ACTA1 mutations have been identified, distributed throughout the entire alpha actin gene. Most of 
these mutations are associated with NM. NM is defined by the presence of rod-shaped structures in 
muscle fibers, so-called nemaline rods, largely composed of α-actinin and actin. Other common 
pathological features are abnormal muscle fiber differentiation and fiber atrophy and/or hypotrophy. 
NM is genetically heterogeneous, with disease-causing mutations identified in different genes coding 
for various components of sarcomeric thin filament.  
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3.2.2. α-TM 

Mutations in the α-TM gene (TPM1), mainly expressed in cardiac muscle, have been associated 
with HCM/DCM (http://cardiogenomics.med.harvard.edu/home). There are currently 13 reported 
mutations in TPM1, of which two are associated with DCM and 11 are associated with HCM 
(http://www.hgmd.cf.ac.uk/ac/gene.php?gene=TPM1). 

3.2.3. β-TM 

The TPM2 isoform of TM encodes for beta-TM, which is mainly expressed in slow, type 1 muscle 
fibers. Mutations in TPM2 have recently been identified as an important cause of neuromuscular 
disorders. These mutations have been associated with various clinical and muscle morphological 
phenotypes, including congenital NM (E117A), congenital myopathy without rods (Q147P) [75], early 
onset myopathy with cap structures (E41K and E139del) [76, 77], and congenital joint contractures 
with distal involvement DA type 1 (R91G) [78], and DA type 2B (R133W) [79]. Different regions of 
TM are in direct interaction with various thin filament proteins, which may explain why these various 
mutations lead to different phenotypic expressions.  

3.2.4. γ-TM 

γ-TM is the product of TPM3, which is mainly expressed in slow, type 1 muscle fibers. Mutations 
in TPM3 have been associated with both dominant and recessive NM [80-84]. Recently, mutations in 
TPM3 have been identified as the common cause of CFTD, a rare form of congenital myopathy with 
marked type 1 fiber hypotrophy as the main pathological finding on muscle biopsy 85. 

3.2.5. Tn Complex 

Mutations in the fast skeletal TnI gene (TNNI2) have been associated with DA syndromes. The one 
missense mutation, Arg174Gln, and the nonsense mutation, Arg156X, have been reported in patients 
with DA type 2B [78]. In addition, a three-base pair deletion of a glutamate at position 167, has been 
reported in a three-generation family with DA type 2B [86] and one heterozygous three-base in-frame 
deletion, Lys176del, has been reported in a three-generation family with DA type 1 [87]. Later a novel 
three-base in-frame deletion, Lys175del, has been reported in a large Chinese family with DA type 2B 
[88]. All the reported mutations in the fast skeletal TnI gene associated with DA syndromes have been 
located in the exon 8 in the carboxy-terminal domain.  
Mutations in cardiac TnI (TNNI3) have been associated with HCM, DCM and restrictive 
cardiomyopathy (http://cardiogenomics.med.harvard.edu/home).  

So far, no disease has been associated with mutations in the slow skeletal muscle TnI gene (TNNI1).  
Mutations in the slow skeletal muscle TnT gene (TNNT1) are associated with Amish nemaline 

myopathy (ANM), a form of NM common among the Old Order Amish [89]. Recently, mutations in 
fast skeletal muscle TnT (TNNT3) have been associated with DA type 2B [90]. More than 30 
mutations associated with HCM/DCM have been described in the cardiac TnT gene (TNNT2) 
(http://cardiogenomics.med.harvard.edu/home). 
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So far, no mutation in skeletal muscle TnC has been reported and only a few mutations in cardiac 
TnC have been associated with HCM/DCM [91, 92].  

3.2.6. Nebulin  

Mutations in the nebulin gene (NEB) are a frequent cause of autosomal recessive NM 
(OMIM#256030). More than 60 NEB mutations have been associated with this form of the rare muscle 
disorder [93-96]. Recently, homozygous missense mutations in the nebulin gene (NEB) have been 
reported to cause a novel distal myopathy, ’’Distal nebulin myopathy’’ [97]. 

4. Conclusions 

Despite the significant advances in knowledge of the etiology of skeletal muscle diseases 
originating in the thick and thin filaments, there is a relative lack of understanding regarding the 
precise mechanistic links between the primary structural mutations at the skeletal muscle sarcomere 
level and the defining characteristics of the disorders. Current knowledge will be improved by 
elucidating novel pathways of disease pathogenesis, required in order to apply biochemical and 
physiological experimental approaches, anchored in animal models, to clarifying the molecular 
mechanisms underlying skeletal myopathy pathogenesis. 

In order to link genotype to phenotype, a broad range of both in vivo and in vitro studies focusing 
on the effects of independent mutations on sarcomeric protein function will be needed; the results may 
lead to better understanding of the disease process in general and hopefully identify targets for 
therapeutic intervention. 
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