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Young Thermo Teacher:  Good Morning Professor.  This is my first year of teaching physical 

chemistry, and I hope that you might share with me some of the insights you have gained from 

teaching courses in thermodynamics over your long career. 

Old Thermo Teacher:  Ah yes, thermodynamics, that most subtle of subjects. I've been teaching 

it for 35 years, and each year I become aware of new ways to understand its relationships and 

better ways to try to explain them. 

YTT:  Several years ago, while still an undergraduate, I had a helpful discussion with one of my 

instructors about entropy (1).  Now that I am teaching a physical chemistry course myself, I am 

encountering some types of entropy problems that seem to fall outside of the models he and I 

discussed. 

OTT:  Can you give me a specific example? 

YTT:  Well, suppose we have a pure optical isomer of a gas in a rigid container and we insert a 

catalyst that permits interconversion of this isomer and its enantiomer.  After sufficient time, it 

seems to me, we’d find a 50-50 mixture of the two isomers at the same temperature. 
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OTT:  Yes, that seems correct.  We should expect equilibrium to be achieved when the rate of 

conversion from the l to the d form equals the rate of the reverse process, and, for a 

thermoneutral process like this one, that should happen when we have equal quantities of the two 

forms.  What does that mean about entropy? 

YTT:  Well, because the change is spontaneous, the entropy of the universe must increase.  If the 

process occurs at constant temperature and pressure, I would expect that no energy flows into or 

out of the surroundings, so it must be that the entropy of the system has increased. 

OTT:  I agree.  So where is the problem? 

YTT:  I can’t find a way to rationalize this entropy change for my students in terms of the model 

that my instructor and I were discussing.  You see, we discussed two limiting extremes for 

entropy-affecting processes.  One extreme was exemplified by heating an ideal monatomic gas at 

constant volume, and the other was by allowing an ideal gas to expand isothermally into a 

vacuum.  In this example of optical isomers, neither the temperature nor the volume is changing. 

OTT:  Aha, I see your problem.  I think that I can help you with this.  When you were discussing 

these things with your instructor, did you have a simple model system to illustrate your thinking? 

YTT:  Yes.  We talked about 10 molecules in a one-dimensional box, each capable of having 

translational energies of 0, 3, 8, or 15 units. 

OTT:  Shouldn’t it be 1, 4, 9, and 16 units? 

YTT:  The mental computations are easier if we redefine the zero point to be the lowest allowed 

energy.  Anyway, we saw quite easily that the number of distinguishable ways to apportion 

energy among the molecules increases if we either add energy without changing the possible 

translational energies, which is equivalent to heating at constant volume, or if we keep the same 

amount of energy but cause the allowed translational energies to get closer together, which is 
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equivalent to increasing the volume of the gas isothermally. 

OTT:  And neither of these things is happening in the case of the optical isomers. 

YTT:  Exactly.  But entropy is a measure of the number of distinguishable ways the energy can 

be apportioned, and because the entropy must have increased in this spontaneous, isolated 

process, I seem to be missing something. 

OTT:  Let’s go back to the simple model of ten molecules.  How many distinguishable 

arrangements did you find when the total energy available for apportionment is three units? 

YTT:  One molecule has three units and the other nine have zero.  That’s the only possibility.  

We decided that there was no way to say which molecule it is that has three units because the 

molecules are all the same, so there is only one distinguishable arrangement. 

OTT:  Right.  So far so good.  Now, how would you analyze the situation if you had five l 

molecules and five d molecules? 

YTT:  Hmmm.   It could be that an l molecule has three units of energy, but it could also be that a 

d molecule has three units of energy.  That’s two distinguishable arrangements.  Gad!  How 

could I have missed that? 

OTT:  So how does the entropy of this mixed pair of molecules compare to that of a pure 

enantiomer? 

YTT: It’s greater, and it has nothing to do with any sort of change of total energy or any change 

in translational energies.   

OTT:  What about vibrational and rotational levels? 

YTT:  Well, molecules capable of optical isomerism would certainly possess such levels, but I 

would expect them to be identical in the two isomers because they have identical bonds and 

moments of inertia. 



 5 

OTT:  So what does this example show you? 

YTT:  That there are three factors that affect entropy change:  the total energy available, change 

in the energy levels available for storing that energy, and change in the extent to which 

molecules are distinguishable. 

OTT:  Now you have the ideas you need to explain some of the situations that have confused 

you. 

YTT:  Yes, I see now that my previous discussion was restricted to pure systems, and so the 

molecules were all indistinguishable.  With mixtures we get this new factor of distinguishability. 

OTT: There is a lot of confusion about this factor.  I think it will help if we consider a few simple 

cases.  First, though, we should identify the ways in which molecules can be distinguishable.  

YTT:  For a gas, the obvious way is if the species are different, like 3He vs. 4He, which have 

different masses and therefore differently spaced translational energy levels, or H2O vs. CH4, 

which differ in mass and internal (electronic, vibrational, and rotational) energy levels. 

OTT:  Yes, that’s what one thinks of first.  But we’ve just discussed a more subtle case. 

YTT:  Ah yes!  The case of optical isomers, where mass and internal energy modes are the same. 

OTT:  Another important case is that where molecules occupy separate volumes.  Even if they 

are otherwise identical, we can still distinguish between a molecule in box 1 and one in box 2. 

YTT:  Now that’s interesting.  I’ll bet it comes into the question of entropy of mixing. 

OTT:  It does indeed, as we will soon see.  

YTT:  OK, are we ready to proceed? 

OTT:  Almost.  I think it will help if we choose a word that we can use to identify a group of 

indistinguishable molecules.  I suggest the term “cohort,” because it suggests a group of identical 

molecules, all within the same volume. 
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YTT:  Why not “system”?  That’s already used. 

OTT:  Yes, but it’s often used in a different way.  A container of air can be called a system, but it 

contains molecules of different kinds that can be distinguished.  There is a cohort of O2, another 

of N2, etc. 

YTT:  I get it. 

OTT:  Let’s begin by revisiting the optical isomer case you brought up earlier.  Using the simple 

model of ten molecules in a one-dimensional box, we’ve seen that the conversion from pure d 

isomer to a racemic mixture increases the number of distinguishable microstates, W, and hence 

the entropy, S = k ln W.  Do you recall an equation that would enable you to actually calculate 

∆S? 

YTT:  Well, one way I could do it would be to slice the box of pure d isomers in half with a 

nonpermeable barrier, and replace one half with a half-box of pure l isomers.  That should not 

affect the entropy.  Then I can remove the barrier to let them mix.  Here, let me put Figure 1 on 

your board. 

 
                           Nd , V            Nl , V                      Nd + Nl , 2V 
 

 
Figure 1.  A partition is removed from between two compartments of equal volume, each 

containing the same number of indistinguishable particles.  ∆S > 0. 

OTT:  Not exactly what I had in mind, but fine.  What would that give you? 

YTT:  Well, I could use the entropy of mixing relationship derivable from classical 

thermodynamics 
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     ∆S = –k(NA + NB)(XAlnXA + XBlnXB)  (1) 

where the N’s are numbers of molecules, k is Boltzmann’s constant, and the X’s are mole 

fractions.  If I start with 2N molecules of d isomer, I’ll end up with N molecules of each isomer 

and, because XA = XB = 1/2, 

∆S = 2Nkln2 

OTT:  Very good.  Now, why has the entropy increased? 

YTT:  Because we have allowed separated volumes of two different isomers to mix. 

OTT:  True, but can you break it down into the three factors we recognized earlier? 

YTT:  Let’s see.  Clearly we are not adding or removing energy, so the total energy to be 

allocated to molecular energy levels is unchanged.  Volume effect?  Yes, I guess, because the 

half-box of d isomer has expanded to twice that volume, and ditto for the l isomer. 

OTT:  What entropy change results from that volume change? 

YTT:  Classically, for the A particles the entropy change for an expansion at constant 

temperature is: 

∆SA = nARln 

! 

Vf

Vi
 

and similarly for the B particles, where I have used nA for the number of moles of A and f and i 

for final and initial states.  Then the entropy change for A and B together is 

     ∆S = nA R ln 
Vf

Vi
 + nB R ln 

! 

Vf

Vi
 

     =  NA k ln 

! 

Vf

Vi
  +  NB k ln 

! 

Vf

Vi
   (2) 

and, if NA = NB = N 
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 ∆S = 2NklnVf/Vi  = 2Nkln2. 

Hey, that’s enough to account for the whole thing! 

OTT:  What about the effect of distinguishability? 

YTT:  Well, two separated half-boxes constitute distinguishable groups, or two cohorts.  

Actually, these two cohorts are also distinguishable because one set is d and the other is l.  That 

makes two reasons for there being two cohorts. 

OTT:  OK.  Now, what about after they mix? 

YTT:  They are all in one volume but they remain distinguishable by virtue of their isomerism.  

So there are still two cohorts, but now for only one reason. 

OTT:  So what effect does the distinguishability factor have on ∆S? 

YTT:  None.  There has been no change in the number of distinguishable molecules. 

OTT:  Very good.  You have shown that bringing a container of l isomer up to a container of d 

isomer and allowing them to mix gives an increase in entropy that results from expansion of each 

gas into a larger volume.  Period.  How do you feel about that? 

YTT:  I’m uneasy.  For one thing, I feel that something is strange about this mixing calculation.  

It is evidently the case that ∆S comes from the expansion of each gas, but that they are 

expanding into each other doesn’t enter the calculation in any obvious way.  I mean, how is the 

fact that the two gases are mixing taken into account? 

OTT:  Good point.  We’ll return to it later.  Anything else? 

YTT:  Yes.  This calculation seems to indicate that distinguishability factors make no 

contribution to ∆S, but when we first looked at the racemization process, distinguishability was 

the only factor that contributed to ∆S. 
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OTT:  Very good.  I see that you retain your ability to recognize when you don’t understand 

something.  That’s crucial in science.  Now, can you figure out why the explanation of ∆S has 

apparently changed? 

YTT:  It's pretty easy to see that the explanation based on volume change comes because I 

postulated bringing the isomers together in half-volumes and letting them mix while expanding 

to a larger volume.  Earlier, though, we described the racemization as resulting from a reaction in 

a fixed volume. 

 OTT:  Exactly.  Now that you see that, you should be able to rationalize the two explanations 

for ∆S. 

YTT:  The original case of racemization occurs at constant volume and proceeds from one cohort 

to two.  The route I chose in order to calculate ∆S kept the number of cohorts fixed at two but 

included expansion from half-volumes. 

OTT:  An important lesson here is that there are often several possible routes to choose from in 

calculating an entropy change, and the apparent explanation for the entropy change will depend 

on the route chosen.  You asked why the entropy increases in the catalyzed racemization at 

constant volume; the answer is that it results from an increase in particle distinguishability. 

YTT:  It would be nice to be able to calculate ∆S directly from the distinguishability factor. 

OTT:  You can do that.  In fact, that's what I was hinting at a minute ago when I asked if you 

knew the equation that allows you to calculate ∆S.  Do you recall the statistical thermodynamic 

relation  for the entropy of an ideal gas composed of N indistinguishable atoms?  Let me remind 

you of it. 

    S(m, T, V, N) = 3/2 Nk  +  kln  

! 

V
N

"
3N
N!

  (3) 
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where N is the number of particles, V is volume and Λ3 = h3/(2πmkT)3/2.  The N! term accounts 

for the indistinguishability of the molecules in a pure gas.  By using this formula, you can 

calculate the effect on S of changing the number of cohorts in your sample. 

YTT:  Can you run through the racemization process with this? 

OTT:  Sure.  The key feature requires us to recognize explicitly that a system having several 

cohorts requires a sum of expressions like that in eq 3, one for each cohort.  So, for the 

racemization process  2Nd   Nd  +  Nl , ∆S = S(final) - S(initial) = 2S(m,T,V,N) - 

S(m,T,V,2N). 

                 

If we use Stirling’s approximation that lnN! = NlnN – N for large N, we obtain 

∆S = 2Nkln2 . 

This shows us that the entropy increases by 2Nk ln2 when, at constant volume and temperature, a 

single cohort of 2N particles turns into two cohorts of N particles each.   

YTT:  OK, I see now how this works.  And this formula, when applied to the alternative route 

where half-boxes are mixed, would generate the 2Nk ln2 value from the volume change.   

OTT:  Right.  The formula is always the same, but the T, V, and N factors change with choice of 

route and show what the explanation for ∆S is for each choice.  It is important to notice the effect 

of changing the number of cohorts.  If the only change is that different cohorts somehow 

combine into one cohort, the number of distinguishable ways to store energy decreases, and 

hence the entropy decreases.  This process is called "assimilation" by Ben-Naim (2). 

YTT:  Using that term, I guess we would say that the entropy increase accompanying 

!S = 2
3

2
Nk + k ln

V
N

"3 NN!

# 

$ % 
& 

' ( 
)
3

2
(2Nk) + k ln

V
2 N

"6 N (2N)!

# 

$ % 
& 

' ( 
= k ln

(2N!)

(N!)
2
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racemization at constant volume is due to deassimilation.  But how useful is this terminology?  

Most processes also involve changes in V or T.   

OTT:  Ah, but entropy effects from changes in distinguishability still contribute, even when 

other things are going on.  In general, increasing the number of cohorts, or deassimilation, 

contributes positively to the overall entropy change for a process.  The entropy effects of factors 

you were talking about with your instructor years ago—total energy to be distributed and the 

energy levels and degeneracies among which that energy is to be distributed in distinguishable 

ways—are sometimes lumped together under the term "thermal entropy."  You have now 

recognized that there is another factor, distinguishability, that is different from the other two and 

that must be accounted for separately.  For now, let's just continue calling it the distinguishability 

factor. 

YTT:  I think I'm seeing things much more clearly now.  But I'm still not happy with the entropy 

of mixing.  The statistical thermodynamic formulas you've presented seem to lack any term to 

correspond to the presence or absence of other molecules in a gas mixture. 

OTT:  Let's turn to that issue.  And let's begin by considering a box of volume 2V, containing 2N 

identical non-interacting atoms of mass m and temperature T.  An impermeable partition divides 

the box in half, with N atoms in each chamber.  What happens to the entropy of this system if the 

partition is removed as shown in Figure 2? 

 
         N,V              N,V                2N, 2V 
 
Figure 2.  A partition is removed from between two compartments of equal volume, each 
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containing the same number of identical particles.  ∆S = 0. 

YTT:  My gut reaction is that nothing happens to it.  I would expect the entropy of two one-liter 

containers of helium at STP to equal that of the same total amount of helium at STP in a two-liter 

container.  Isn't that what we mean when we say that entropy is an extensive property? 

OTT:  Right.  But why is ∆S equal to zero?  Is it because all three types of contribution we have 

been discussing are zero? 

YTT:  Let’s see.  No energy is added or removed, so that has no effect.  Volume?  It doubles, so 

∆S = 2Nk ln2 from this factor.  Distinguishability?  When we remove the partition, we go from 

two cohorts to one.  Assimilation occurs.  The contribution from that is -2kN ln2, giving a total 

∆S of zero.  Remarkable!  It seems like nothing happens, but really two things happen with 

effects that cancel. 

OTT:  Excellent. In fact, it is not possible to provide a rationale for this process, known as  

Gibbs’ paradox, unless indistinguishability is taken into account.1  Recall that you sliced the box 

of d isomers in half in your earlier calculation of ∆S for the racemization process with no 

concern that such a process might change the entropy.  In fact, it doesn't.  But you can now 

appreciate that such a process of division is a bit richer in conceptual content than you realized. 

YTT:  I would be chagrined if I weren't so delighted at seeing it now.  But this latter process isn't 

really the mixing process I am concerned about.  The two gases being "mixed" are the same. 

OTT:   But now you are ready for the crowning touch.  Repeat the analysis for the case where the 

gases in the separate chambers are different.  Let's say one is helium and the other is neon—a 

situation exactly as pictured in Figure 1.   

YTT:  OK.  This is just like the previous calculation, where one gas was a d isomer and the other 

was the l isomer.  We've already seen that ∆S equals 2Nk ln2, called the entropy of mixing.  
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Again, total energy is unchanged.  Again, the volume accessible for each gas doubles, allowing 

translational energy levels to get closer together and yielding a translational entropy contribution 

of 2Nk ln2.  The number of cohorts is initally two—and it remains two, so no entropy 

contribution comes from the distinguishability factor.  So ∆S = 2Nk ln2 because of the volume 

effect.  This is the same conclusion we saw earlier.  I'm still not happy. 

OTT:  But now you can compare the case where the two chambers contain helium with the case 

where one contains helium and the other contains neon. 

YTT:  The difference is easy to see.  With only helium, there is a decrease in the number of 

cohorts, and that cancels the effect of expansion.  With helium and neon, the effect of expansion 

is not canceled because there is no effect from a distinguishability change.  We continue to have 

two cohorts. 

OTT:  So what does this tell you about entropy of mixing? 

YTT:  It seems to me to be a misleading term.  It had me thinking that gases somehow "like to 

mix," when they actually just "like to expand."  I guess this makes more sense though, since ideal 

gas A will expand to fill a larger volume without "knowing" whether some other ideal gas B is 

already there.  I mean, we sometimes explicitly postulate ideal gases to be point masses with zero 

probability of encountering each other. 

OTT:  But let's check this.  If you are right, then what would ∆S be if a liter of helium and a 

separate liter of neon are combined into a single one-liter vessel, all at the same temperature, as 

illustrated in Figure 3? 
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      NA,V          NB, V′                        NA,NB, V 
 
Figure 3.  Compartments containing the same number of indistinguishable particles (but a 

different kind in each compartment) and having the same volume are collapsed into one another.  

∆S = 0 

YTT:    Well, if I'm right, there will be no volume effect, no distinguishability effect, and no total 

energy effect, and ∆S should be zero.  Let me go back to Figure 1.  We've already traced the 

combining of V with V′ to give 2V.  (I'm using V′ to indicate that it is separated from V.)  For 

this process, ∆S = 2kN ln2.  Now we'll isothermally and reversibly compress the doubled volume 

as shown in Figure 3.  In this case, ∆S = -2kN ln2.  So overall, ∆S = 0. 

OTT:    Right.  Clearly the entropy for these gases is indifferent as to whether they cohabit the 

same container of volume V or each inhabits one of two separate containers of volume V.  We 

can symbolize this conclusion as follows: 

S(m1,T,V,N1) + S(m2,T, V′,N2)  = S(m1,T,V,N1) + S(m2,T,V,N2)       (4) 

where V and V′ are separated volumes of equal size.  Because the values of V and V′ and N1 and 

N2 are the same, the equality is obvious (3). 
 
YTT:    This is really helping me sort out my thinking.  I'm not sure how much of this I can 

divulge to my physical chemistry class, but it certainly clears up some of my own uncertainties. 

OTT:    You are right in seeing that your own level of understanding can help you make 

intelligent choices of how to handle your classes.  Certainly, entropy of mixing is a good 

example of this.  The term is widely used and is quite misleading when applied to gases, where it 

is first encountered by students.  But this might present an opportunity to deepen your students’ 

understanding of entropy. 

YTT:  I’m not sure I follow you. 
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OTT:  Well, if we go back to the racemization example, we’ve already seen how to calculate the 

change in entropy from a route involving spontaneous mixing.  You could point out to your 

students that this is one way to evaluate the entropy change for the catalyzed racemization 

process.  Then you could challenge them to think of a reversible route for this process for which 

they could calculate the entropy change from the heat transferred divided by the absolute 

temperature. 

YTT:  I like that.  It would reinforce the notion that the entropy change for any process can 

ultimately be linked to q/T for any reversible path between the same states.  It would be a 

challenge for them to find a reversible path for the racemization process, but I could throw in a 

hint 2. 

OTT:  Yes.  And even if you don’t go into the concept of cohorts and all that, this allows you to 

make the point that “distinguishability” simply means that some physical difference exists that 

allows us to imagine a reversible mixing process.  In fact, the entropy of mixing, eq 1, represents  

the effects of molecular distinguishability (4).    

YTT:  I notice that the entropy of mixing for the process of Figure 1 obeys the standard classical 

eq 1 while that for the process of Figure 3 does not. But the latter process does not proceed at 

constant pressure.  Of course!  What the standard classical formula yields should really be called 

“the entropy of mixing at constant pressure.”  When I say it that way, I can see how the need for 

the presence of the “other” gas can be rationalized.  It’s there to maintain the correct pressure in 

the additional volume into which the first gas is going to expand.  

OTT:  And the other gas flows into the first volume to replace the portion of the first gas that 

flows out, helping to keep the pressure constant there too.  So the presence of two gases is 
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necessary for keeping the pressure constant, but the entropy change is completely explainable by 

the expansion process, and the mixing is a consequence of the expansions. 

YTT:   Maybe this is the definition I should use in class:  The entropy of mixing is the entropy 

increase due to expansion of initially separated, distinguishable gases or liquids into each other’s 

volumes at constant pressure and temperature.  

OTT:   Good.  I see you have included liquids, which is correct.  We should talk more about 

liquids later, though, since students will view them as being different from gases.  

YTT:   It is interesting to see that the mixing of different gases at constant volume and 

temperature gives an entropy change of zero. 

OTT: That’s an excellent observation.  It would helpful to point out this contrast in the 

classroom. 

YTT:  Let me see if I can imagine another system to which these ideas might apply.  If we carry 

out an isothermal, constant volume transformation on an ideal gas, the translational energy 

levels’ spacings remain unchanged and the total energy present is unchanged.  So, for the process 

of combining two separated volumes of a single gas, shown in Figure 4, we might naively expect 

∆S to be zero.  

 
  N,V          N,V     2N,V 
 
Figure 4.  Compartments containing the same number of identical particles and having the same 

volume are collapsed into one another.  ∆S < 0. 

But, because two cohorts have collapsed into one, ∆S is less than 0.  In fact, it’s -Nkln2.  And we 
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know this is right because this is simply an isothermal compression of an ideal gas to half its 

initial volume. 

OTT:    Before we go any further, can you summarize how the factors behave for the five types 

of situations we've discussed so far? 

YTT:    The total energy remains the same for all five of these changes.3  The racemization 

process takes place at constant volume (∆S= 0), and the system goes from one cohort to two (∆S 

>0).  Entropy increases.  The "mixing" of two samples of an identical gas doubles the volume 

(∆S >0), and the system goes from two cohorts to one (∆S <0).  Entropy is unchanged.  The 

mixing of two different gases doubles the volume (∆S >0), and the number of cohorts remains 

unchanged (∆S = 0).  Entropy increases.  The mixing of two different gases with compression to 

the same final volume (∆S=0) has no effect on the number of cohorts (∆S=0).  Entropy is 

unchanged.  The “mixing” of two identical gases with compression to the same final volume (∆S 

= 0) reduces the number of cohorts (∆S <0).  Entropy decreases. 

OTT:    I think you have a good understanding of gases.  However, when we come to solids, 

liquids, or surfaces, a new feature enters the picture. 

YTT:   Ah yes.   I would suppose that chemisorbed molecules could be distinguishable. 

OTT:    It's probably best to start with a simpler system.  Let's begin with a volume V containing 

N molecules of a pure gas.  How many cohorts? 

YTT:    Just one. 

OTT:    I put in a partition.  Cohorts and entropy? 

YTT:    Two cohorts, increasing the entropy, and the volume is halved, decreasing the entropy, so 

over all the entropy is unchanged. 

OTT:    In goes another partition, perpendicular to the first, making four subchambers.  So now 
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we have....? 

YTT:    Four cohorts, still the same entropy. 

OTT:    Let's say I keep doing this, ultimately arriving at N equal volumes, v = V/N.  Let's also 

say that, with the help of Maxwell's demon, I manage to get exactly one molecule of gas in each 

of these volumes.  I now have....? 

YTT:    N cohorts, and the same entropy—I think.  I'm not sure though. Maxwell's demon is 

sometimes used to perturb normal entropic proceedings.   

OTT:    True enough.  But when you think of the way the volume factor affects entropy in a way 

that just counters changes in number of cohorts, it seems that you must have it right.  In fact, 

what if we reverse the argument and begin with N little volumes, v = V/N, with one molecule in 

each cell?  We then remove partitions, and.... 

YTT:  ...the entropy remains unchanged as the effects of increasing volumes and decreasing 

number of cohorts cancel. 

OTT: This is the cell model for a gas, and we’ll return to it in a moment.  But first, let’s suppose 

that we transform this picture so that it describes a pure liquid.  

YTT:    A liquid?  Oh, you mean by making the little volumes so tiny that each is filled up by a 

single molecule? 

OTT:    Right.  In this model we imagine that a molecule is confined by a cage of other 

molecules.  The cage molecules contain the central molecule for a time that is long compared to 

the time it takes to move across the cage so we can consider the molecule to be constrained to 

move within a cell (4).  We can view a pure liquid as consisting of N molecules, each in its own 

tiny volume, v, and each belonging to its own cohort of one.  What will happen to the entropy of 

this liquid if you divide it in two with a partition? 
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YTT:    Well, the total volume V is divided into two half-volumes, but I guess that really doesn't 

matter because the translational energy levels depend on v, and that's unchanged. 

OTT:    Right.  And the number of cohorts? 

YTT:    Still N, because each molecule is still in its own little cell.  So ∆S is zero, just as we 

would expect. 

OTT:    Good.  Notice how different this is from the gas case, where you found ∆S is zero for 

partitioning because of cancellation of volume and distinguishability effects.  For a liquid, these 

effects are both equal to zero. 

YTT: Interesting.  The cell viewpoint is making a fundamental change in the way we attribute 

contributions to ∆S. 

OTT: Now let's consider a solution made by mixing this liquid A with a second liquid B, both 

at the same temperature. To keep it as simple as possible, we'll assume the molecules of A and B 

to be of the same size and also that all of the interactions between A and B are the same as A 

with A or B with B. 

YTT:    OK.  That means that there will be no changes in thermal entropy or enthalpy due to 

intermolecular interactions as these liquids mix.  This is an ideal solution. 

OTT:    Right.  Now, what about cohorts? 

YTT:    No change there either. 

OTT:    So what is the entropy change? 

YTT:    Zero, it appears.  But that can't be right.  These two liquids should mix spontaneously.  

The equation for entropy of mixing that we apply to gases should apply to liquids too. 

OTT:    You see the problem:  The three factors we've used to understand entropy changes of 

gases don't reveal an explanation for the entropy increase accompanying mixing liquids.  Can 
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you see what's missing? 

YTT:    Well, the difference between the before and after situations is that, before, the A and B 

molecules are in different macroscopic volumes VA and VB, and after, are scattered throughout 

V=VA+VB.  Because there are no changes that affect entropy in translational or internal energy 

levels due to mixing, there must be some change in the number of distinguishable ways to count 

microstates.....Oh, I think I see where it is.  Because the tiny cells in the liquid mixture are in 

distinguishable spatial locations, we can distinguish between an arrangement for which a 

particular cell contains a molecule of A and one in which it contains B. 

OTT:    Very good!  Describe how you now visualize the unmixed and mixed situations. 

YTT:    OK. Before mixing, liquid A  is in volume VA with entropy SA.  There are NA cells, each 

of volume VA/NA, each containing one A molecule.  Each A molecule is a cohort of one.  Ditto 

for B.  Sthermal = SA + SB.  Now, they mix. Each A molecule remains in a cell of identical 

dimensions, and the intercell interactions are as before because we are assuming ideality.  This 

continues to give Sthermal = SA + SB.  But the location of such a cell is no longer restricted to the 

volume VA.  It can be anywhere in VA+VB.  The same applies for B.  Where before mixing we 

had no choice as to which cells had an A or a B molecule, we now have a huge choice.  In fact, 

there are (NA+NB)!/NA!NB! distinguishable arrangements. 

OTT:    Excellent!  You've analyzed it beautifully.  It's particularly interesting to observe that 

you've treated the particles as all distinguishable in saying there are NA+NB cohorts--one per 

cell--but then you've treated all the A or B molecules as being indistinguishable when dividing 
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by NA!NB! in counting distinguishable arrangements.  Were you aware of doing that? 

YTT:    No, I wasn't.  It does seem inconsistent, and yet.…  well, the A molecules certainly are 

indistinguishable for the process of placing them into cells.  But once they are in a cell, then they 

can be distinguished from A molecules in other cells—because the cells are distinguishable.  

Wow!  This really gets subtle. 

OTT:    What would be the effect on the entropy of the increased number of distinguishable 

arrangements? 

YTT:    Because that's the only change, we can identify ∆S with k ln[(NA+NB)!/NA!NB!]. 

OTT:    Yes, and that leads to ∆S=-k(NA+NB)(XAlnXA+XBlnXB), where XA is the mole fraction 

of A.  It is just our good old entropy of mixing equation. 

YTT:    How about that!  You know, I feel that the term "mixing" is more appropriate for this 

process.  With gases, “mixing” at constant pressure occurs due to expansions into larger volumes 

that happen to contain other molecules.  Here, however, the increase in the number of ways to 

place A in cells really does come about as a result of B's presence, because that's what increases 

the total liquid volume and the total number of cells.   

OTT: Maybe you’re being too hasty.  A and B molecules have to be present in both cases.  In 

the case of liquids, that yields more cells.  And with gases... 

YTT: ...they  provide the additional volume for each other.  I guess you’re right.  From the 

classical vantage, these processes are equivalent.  But our microscopic picture is sure different.  

OTT:    Yes indeed.  The entropy contribution due to this additional type of distinguishability is 

sometimes referred to as "configurational entropy."  I think you can see why.  The term seeks to 

convey the idea that the increase in the number of distinguishable ways to distribute the energy 
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results from the increase in the number of ways a system can be set up, or configured, when 

placing molecules into cells at particular sites.  Each configuration can distribute energy in its 

own variety of ways, and the grand total of ways comes from adding up the results of all the 

configurations.   

YTT:  And in the present case we contrived, by assuming ideality, to make every configuration 

possess the same "variety of ways," so we could simply multiply by the number of 

configurations. 

OTT:  Quite right.  I want to emphasize that the distinguishablity factor is entering in a new way 

now.  In our example of gases, we focused on the effects of changing the total volume and/or the 

number of cohorts.  Mixing two liquids, however, does not change the cell volume v or the 

number of cohorts.  If the two liquids are the same liquid, the net effect on entropy is zero.  If 

they are different liquids, an additional kind of distinguishability comes in and gives us the 

configurational entropy.  This effect is still one of distinguishability, but not because of changing 

number of cohorts.  It is because of distinguishable spatial arrangements.  Because presenting 

each species with more choice of site is akin to allowing it to “spread out” or “expand,” this 

configurational entropy term feels analogous to gas expansion into a vacuum, or into another gas.  

Even the mathematics is the same as entropy of mixing of gases. 

YTT:  You’re right.  It feels analogous to gas expansion, but the underlying model is physically 

different.  The gas picture takes account of the change in total volume, V, and doesn’t need to 

consider configurations.  The liquid picture keeps a constant volume, v, for  a molecule’s “cage,” 

but has to bring in the configurational concept in order to account for distinguishable cage 

locations.  Both pictures correspond to identical entropies of mixing, though, so it’s inevitable 

that there will be confusion. 
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OTT:  Yes.  The cell model for gases that are under ideal conditions artificially constrains the 

molecules into imagined volumes that are much smaller than the actual volume in which they 

move.  That means that the translational energy levels will be too far apart, so the calculated 

thermal entropy will be too small.  But the configurational entropy that results from using this 

physically unrealistic model compensates. 

YTT:  But I’ve certainly seen the cell model used for gases.  If we consider real gases at normal 

pressures, the mean free path for the molecules is far smaller than the container dimensions.  

That seems to be an in-between physical situation. 

OTT: Good point.  Fortunately, the model used to choose the equation with which to calculate 

the entropy turns out not to matter insofar as affecting the value of ∆Smixing.  We get the same 

result whether we use the classical mixing formula, the statistical thermodynamic formula using 

full volume, or the statistical thermodynamic formula using cell volumes.  The classical formula 

gives us a number, but no explanation.  As for the statistical formulas, we are at liberty to use 

either choice for any phase, but the apparent explanation for the entropy increase depends on 

which model is selected. 

YTT: It  seems to me that the pedagogically preferable choice is to use the full-volume model 

for describing ideal gases and the cell model for liquids.  That seems more in line with the actual 

physical situation.  If we try to apply a full volume concept to the mixing of two identical liquids 

we are back to a variant of the Gibbs’ paradox.  Because the full volume of the mixture is 

available, the translational entropies are affected and we are once again required to deal with 

distinguishability by recognizing that the number of cohorts is changing, bringing the total 

entropy change back to zero. As for discussing real gases or critical fluids at intermediate 
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pressures, I guess I would opt for a cell model wherein the cell size bears some relation to the 

physical situation.  I’d use the simple classical formula, though, to calculate actual values of 

∆Smixing at constant pressure and temperature.   

OTT:   I agree.  It is truly fortunate that we can get the numerical value without having to worry 

about getting the detailed physical picture figured out.   However, when teaching a course, I 

prefer describing the situation in physical terms that are appropriate, and that means avoiding 

configurational entropy in cases where ideal gases are mixed, and including it in cases where we 

are considering liquids, solids, or real gases at pressures where their mean free paths are less than 

the full volume.   

YTT:  I begin to understand why there is so much confusion and disagreement about this aspect 

of entropy.  The testable, numerical aspect is model-neutral, and the conceptual aspect is a matter 

of taste. 

OTT:  Exactly right.  And I think we have to anticipate that our taste may not be universally 

shared.  Anyway, let’s proceed.  How do you now see the ways that entropy can be affected? 

YTT:  Change in total energy, changes in the energy levels available to the molecules, and 

changes in distinguishability.  Distinguishability is determined by differences in the molecules 

themselves, or by differences in their locations.  We can account for these by counting cohorts or 

configurations. 

OTT:  I think the approach we have been taking, following the situation from one or two cohorts 

in one or two macroscopic volumes all the way down to a cellular model, where each molecule is 

in its own cohort, allows us to see how changes in distinguishability  and changes in volume 

offset each other, and reveals how the volume contribution to entropy at one extreme is linked to 
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the configurational entropy at the other. 

YTT:  And it shows how the extensive property of entropy is maintained all the way.  What 

fascinating stuff!  My students might be able to understand some of this, but, even if they don’t, 

it certainly helps me see what’s taking place in these processes.  Thank you for taking the time to 

guide me through all this. 

OTT:  It’s been a pleasure.  Perhaps someday you’ll be able to pass the favor along to the next 

generation of teachers. 
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Notes 

1. It is sometimes claimed that Gibbs’ paradox arises only from the statistical thermodynamic 

point of view.  However, the fact that “mixing” two volumes of neon yields no entropy 

change whereas mixing a volume of neon with a volume of helium leads to an entropy 

increase can be explained at the classical level only by the incorporation of distinguishability 

in some way.  Discussions relevant to this matter appear in references 4-6. 

2. One possible way:  1.  Divide a sample of one enantiomer in two, and separate the two half-

samples.� ∆S = 0.  2.  Replace one of the half-samples with an equal amount of the other 

enantiomer at the same T and P.  Because each enantiomer has the same entropy, ∆ S = 0.  3.  

Place the two half-samples together, separated by a barrier made by the heads of two pistons 

in contact.  One piston is permeable only to one enantiomer and the other piston is permeable 

only to the other enantiomer. ∆ S = 0.  4.  Move one piston in an isothermal, reversible 

expansion through the enantiomer to which it is permeable.  This allows the other enantiomer 
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to fill the container.  Repeat the operation for the other piston.  Now the enantiomers are fully 

mixed.  The heat absorbed in the isothermal, reversible expansions, divided by T, gives ∆S > 

0.  It is relevant to note that the “concept of a semipermeable membrane requires the 

existence of some feature distinguishing the molecules of the mixture”(4, p. 558).    

3. Work and heat are zero for the first three processes.  For the last two processes they are 

nonzero, but they cancel. 
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Figure 1.  A partition is removed from between two compartments of equal volume, each 

containing the same number of indistinguishable particles.  ∆S > 0. 

 

Figure 2.  A partition is removed from between two compartments of equal volume, each 

containing the same number of identical particles.  ∆S = 0. 

 

Figure 3.  Compartments containing the same number of indistinguishable particles (but a 

different kind in each compartment) and having the same volume are collapsed into one another.  

∆S = 0 

 

Figure 4.  Compartments containing the same number of identical particles and having the same 

volume are collapsed into one another.  ∆S < 0. 

 


