Full Paper

Isatinones A and B, New Antifungal Oxindole Alkaloids from *Isatis costata*

Itrat Fatima¹, Ijaz Ahmad², Itrat Anis¹, Abdul Malik^{1,*} and Nighat Afza³

¹ International Centre for Chemical Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan

² Medicinal Botanic Centre, PCSIR Labs. Complex Peshawar, Peshawar, N.W.F.P, Pakistan

³ Pharmaceutical Research Centre, PCSIR Labs. Complex, Karachi-75270, Pakistan

^{*}Author to whom correspondence should be addressed; e-mail: abdul.malik@iccs.edu; Tel: (+92) 21-4824926; Fax: (+92) 21-4819018

Received: 6 January 2007; in revised form: 21 January 2007 / Accepted: 22 January 2007 / Published: 6 February 2007

Abstract: Two new oxindole alkaloids isatinone A (1) and B (2) have been isolated from *Isatis costata*, along with the known trisindoline. Their structures have been assigned on the basis of spectroscopic techniques and chemical studies. Both new compounds showed significant antifungal activity.

Keywords: *Isatis costata*; Brassicaseae; oxindole alkaloids; structure elucidation; antifungal activity

Introduction

The genus *Isatis*, belonging to the family Brassicaseae, comprises 50 species, mainly distributed in the Irano-Turanian region. In Pakistan it is represented by seven species [1]. *Isatis tinctoria* or woad is a common plant cultivated throughout the centuries to produce the blue dye indigo. Nowadays, woad is also used in Chinese folk and modern medicine [2]. "Ban-Lan-Gen" is one of the most commonly used traditional Chinese medicines for antipyretic, anti-inflammatory, antiviral, antimicrobial and detoxifying purposes. Its original source was considered to be the dried roots of three plants, *Isatis indigotica*, *Isatis tinctoria* and *Strobilanthes cusia* [3-4]. Now the roots of *Isatis indigotica* have been

identified as the main source of "Ban-Lan-Gen" and recorded as such in Chinese Pharmacopoeia (1990 edn.) [5]. The ethno-pharmacological importance of the genus *Isatis* prompted us to investigate the chemical constituents of *Isatis costata*, which is an annual or biennial herb, found in northern parts of Pakistan. Herein we report the isolation and structural elucidation of isatinones A (1) and B (2), along with the known trimeric oxindole alkaloid trisindoline [6]. Both alkaloids 1 and 2 showed significant antifungal activity against various strains.

Results and Discussion

The ethanolic extract of *Isatis costata* was partitioned between EtOAc and water. Alkaloids librated from the aqueous fraction with 10% NH₄OH were extracted with CH₂Cl₂. Column chromatography of the CH₂Cl₂ fraction provided the known alkaloid trisindoline, along with two new oxindole alkaloids which we have named isatinones A (1) and B (2). These compounds have been assigned the structures shown in Figure 1, as described below.

Isatinone A (1) was a pale yellow amorphous solid, mp 178-179°C. The molecular formula $C_{16}H_{13}NO_2$ was established its the HR-EI-MS spectrum, which showed a molecular ion peak at m/z 251.0946 (calc. for $C_{16}H_{13}NO_2$: 251.0943). The IR spectrum indicated the presence of an amide carbonyl (1685 cm⁻¹) and an aromatic ring (1610, 1560, 1450 cm⁻¹). The UV spectrum showed absorption maxima at 208, 231 and 270 nm, suggesting the presence of an oxindole chromophore [7]. The ¹H-NMR spectrum was characteristic of disubstituted indoles [δ 7.54 (1H, dd, *J*=7.9, 1.5 Hz, H₄), 7.19 (1H, ddd, *J*=8.4, 7.1, 1.5 Hz, H₆), 7.08 (1H, ddd, *J*=7.9, 7.1, 1.0 Hz, H₅), and 6.86 (1H, dd, *J*=8.4, 1.0 Hz, H₇)]. In addition, it showed an indolic amide NH singlet at δ 12.7. The presence of a monosubstituted phenyl ring could be inferred by the ¹H-NMR spectrum, which showed the appropriate signals in the aromatic region [δ 7.02 (2H, m), 7.34 (2H, m), and 7.35 (1H, m)]. In addition it showed the presence of signals due to a methoxyl group at δ 3.87 (3H, s).

The ¹³C-NMR spectrum (BB and DEPT) showed sixteen signals, comprising of one methyl, nine methine and five quaternary carbons. The downfield signals at δ 167.1 could be assigned to the carbonyl carbon of an amide. The olefinic carbons resonated at δ 148.7 and δ 103.1, respectively. The other 12 signals ranging from δ 144.0-115.1 were due to aromatic carbons, while the methoxy carbon resonated at δ 56.7. The above spectral data was consistent with an oxindole type alkaloid with additional phenyl and methoxyl moieties. Since the presence of a disubstituted indolic moiety has already been established, therefore the only location for these groups is the exocyclic olefinic carbon

of a methylidene moiety. The structure was not only supported by ${}^{1}H{-}{}^{1}H$ COSY spectrum, but also by HMBC correlations (Figure 2) in which the H-4 proton at δ 7.54 showed ${}^{2}J$ correlations with C-3a (δ_{C} 124.0) and ${}^{3}J$ correlations with C-7a (δ_{C} 144.0) as well as C-3 (δ_{C} 103.1). The proton at δ_{H} 7.02 (H-3') showed ${}^{3}J$ correlations with C-1' (δ_{C} 148.7) and ${}^{2}J$ correlations with C-2' (δ_{C} 141.1). The methoxyl protons at δ_{H} 3.87 showed ${}^{3}J$ correlation with C-1' (δ_{C} 148.7). The geometry of the double bond was assigned on the basis of chemical shifts of the olefinic carbons. Thielke *et al.* [8] have reported that the olefinic carbon in the α -methylene lactam system is less shielded in the *Z* than in the *E* geometry because of a large paramagnetic anisotropy effect from the lactam carbonyl group. The values of olefinic carbons were consistent with theoretically calculated values for the *E* geometry and showed very close agreement to those of costinone B, reported in the literature [9]. This was further confirmed by NOE correlation between δ_{H} 7.54 (H-4) and protons of the methyl group at δ_{H} 3.87 [10]. The assignments of 13 C-NMR signals were facilitated by HMQC spectrum and found in complete agreement to the assigned structure of isatinone A (1) as 3-[(E)-methoxy (phenyl) methylidene]-1,3dihydro-2*H*-indol-2-one.

Figure 2. Important HMBC and NoE correlations of isatinone A (1).

Isatinone B (2) was isolated as a pale yellow amorphous solid, mp 189-191°C. The molecular formula $C_{31}H_{33}NO_4$ was determined by negative ion HRFABMS, which showed a pseudomolecular ion peak at m/z 482.2328 (calc. for $C_{31}H_{32}NO_4$: 482.2331). The UV and IR spectra were very similar to those of 1, except the presence of additional absorptions due to the ester moiety. The ¹H- and ¹³C-NMR spectra were also found to be similar to those of 1, except for the replacement of the methoxyl group by a 2-ethylhexyl phenylacetic acid ester moiety.

The ¹³C-NMR spectrum (BB and DEPT) showed thirty-one signals, comprising of two methyl, six methylene, fourteen methine and nine quaternary carbons. The signals at δ_C 169.3 and 165.3 could be assigned to carbonyl carbons of ester and amide, respectively. The methylidene olefinic carbons resonated at δ_C 149.4 and 103.9, respectively. The other signals ranging from δ_C 144.4–115.0 were due to aromatic carbons. The oxymethylene carbon resonated at δ_C 69.1, while signals of five methylene groups were observed from δ_C 49.6–24.0. The two terminal methyl groups resonated at δ_C 14.4 and 11.4, respectively.

The ¹H-NMR displayed a pair of *ortho*-coupled AA'XX' type signals at $\delta_{\rm H}$ 7.06 and $\delta_{\rm H}$ 6.49 (each 2H, d, *J*=8.2 Hz), indicating the presence of an additional 1, 4-disubstituted benzene ring. The signal of the oxymethylene protons was observed at $\delta_{\rm H}$ 4.20, while another methylene group was observed at $\delta_{\rm H}$ 3.40 (s). The unresolved multiplets at $\delta_{\rm H}$ 1.31 and $\delta_{\rm H}$ 1.54, integrating for four protons each, respectively, were due to four further methylenes. In addition, it showed an aliphatic methine signal at

 $\delta_{\rm H}$ 1.70 (m) and a pair of three proton triplets for the terminal methyl groups at δ 0.83 (*J*=6.4 Hz) and δ 0.90 (*J*=6.3 Hz), respectively.

	1			2			
C/H	δH	$^{1}\mathrm{H}\text{-}^{1}\mathrm{H}$	C/H	δΗ	$^{1}\mathrm{H}-^{1}\mathrm{H}$		
		COSY			COSY		
1	12.7 (1H, s)		1	12.7 (1H, s)			
2			2				
3			3				
3a			3a				
4	7.54 (1H, dd, 7.9, 1.5)	H-5, H-6	4	7.20 (1H, dd, 8.0, 1.5)	H-5, H-6		
5	7.08 (1H, ddd, 7.9, 7.1, 1.0)	H-4, H-6	5	7.08 (1H, ddd, 8.0,7.0, 1.5)	H-4, H-6		
6	7.19 (1H, ddd, 8.4, 7.1, 1.5)	H-5, H-7	6	7.61 (1H, ddd, 8.4, 7.0, 1.5)	H-5, H-7		
7	6.86 (1H, dd, 8.4, 1.0)	H-6, H-5	7	6.89 (1H, dd, 8.4, 1.5)	H-6, H-5		
7a			7a				
1'			1'				
2'			2'				
3'	7.02 (1H, m)	H-4', H-5'	3'	7.64 (1H, m)	H-4', H-5'		
4'	7.34 (1H, m)	H-3', H-5'	4'	7.36 (1H, m)	H-3', H-5'		
5'	7.35 (1H, m)	H-4', H-6'	5'	7.36 (1H, m)	H-4', H-6'		
6'	7.34 (1H, m)	H-5', H-7'	6'	7.36 (1H, m)	H-5', H-7'		
7'	7.02 (1H, m)	H-6', H-5'	7'	7.64 (1H, m)	H-6', H-5'		
OCH ₃	3.87 (1H, s)	,	1"				
U			2"	7.06 (1H, d, 8.2)	H-3"		
			3"	6.49 (1H, d, 8.2)	H-2"		
			4"				
			5"	6.49 (1H, d, 8.2)	H-6"		
			6"	7.06 (1H, d, 8.2)	H-5"		
			7"	3.41 (2H, s)			
			8"				
			1'''	4.20 (2H, m)	H-2'''		
			2'''	1.70 (1H, m)	H-1"". H-		
					3"",		
					H-1''''		
			3'"	1.65 (2H, m)	H-2''', H-4'''		
			4'''	1.54 (2H, m)	H-3''', H-5'''		
			5'''	1.31 (2H, m)	H-4''', H-6'''		
			6'''	0.83 (3H, t, 6.4)	H-5'''		
			1''''	1.33 (2H, m)	Н-2"". Н-		
					2""		
			2''''	0.90 (3H, t, 6.3)	H-1''''		

Table 1. Correlated ¹H-NMR and COSY spectral data (CD₃OD) of isatinone A (1) and isatinone B (2).

The structure was confirmed by a series of ¹H-¹H COSY (Table 1) and HMBC correlations (Figure 3). In addition to the usual correlations due to indolic and phenyl moieties, it further showed ²*J* correlation of H-2" at δ 7.06 with C-1" (δ_C 141.0) and ³*J* correlation with C-4" (δ_C 124.1). The signal at δ_H 3.41 (H₂-7") showed ²*J* correlations with C-4" (δ_C 124.1) and C-8" (δ_C 169.3). The oxymethylene protons at δ_H 4.20 (H-1") showed ³*J* correlations with C-8" (δ_C 169.3); C-3"" (δ_C 31.6); C-1"" (δ_C 24.0) and ²*J* correlation with C-2"" (δ_C 40.2). The terminal methyl groups at δ_H 11.4 and δ_H 14.4 showed ²*J* correlations with C-5"" (δ_C 24.9) and C-1"" (δ_C 24.0), respectively. The *E* geometry was assigned by comparing the chemical shifts of C-3 and C-1' in the ¹³C-NMR spectrum, which showed close resemblance to those of **1**. It could further be confirmed by the presence of NOE correlations between

H-4 at $\delta_{\rm H}$ 7.20 and the protons of the substituted phenyl moiety at $\delta_{\rm H}$ 7.06 (Figure 3). The assignments of ¹H- and ¹³C-NMR signals were facilitated by ¹H–¹H COSY and HMQC spectra and found in complete agreement with the assigned structure of isatinone B (**2**) as 2-ethylhexyl 2-{4-[2-oxo-1, 2-dihydro-*3H*-indol-3-ylidene) (phenyl) methoxy] phenyl} acetate.

The known alkaloid trisindoline was identified by comparison of its spectroscopic characteristics with those reported in the literature [6].

Biological Activity

The antifungal activities of both **1** and **2** were determined by the agar tube dilution method and significant activity was observed against *Trichophyton schoen leinii*, *Aspergillus niger*, *Candida albicans*, *Trichophyton simii*, and *Macrophomina phaseolina*.

Name of fungus	Inhibition (%) of	Inhibition (%)		Standard drugs	Inhibition (%) of Standard
	crude extract	1	2	Standard drugs	drugs
Trichophyton schoen leinii	71.4	70.0	81.2	Miconazole	90
				Ketoconazole	90
Aspergillus niger	50.1	68.0	78.0	Amphotericin-B	100
Pseudallescheria boydri	39.4	55.7	59.5	Miconazole	90
				Ketoconazole	90
Candida albicans	48	69.1	70.3	Nystatin	90
Microsporum canis	34	15.5	25.0	Miconazole	100
				Ketoconazole	100
Trichophyton mentagrophytes	53	60.0	50.7	Miconazole	100
				Ketoconazole	100
Trichophyton simii	67.5	77.0	80.4	Miconazole	100
Fusarium solani var. lycopersici	12	2	8	Benlate	100
(tomato)					
Macrophomina phaseolina	56	71.0	75.1	Benlate	100
· ·				Nabam	
Rhizoctonia solani	60.2	50.0	54.0	Benlate	100

Table 2. In vitro fungicidal bioassay of crude extract and Isatinones A (1) and B (2).

Conclusions

In summary, the isolation of two novel antifungal oxindole alkaloids named isatinone A and B and the known alkaloid trisindoline from *I. costata* has been achieved and their structures elucidated with the help of spectroscopic techniques.

Experimental

General

Optical rotations were recorded on a JASCO DIP-360 digital polarimeter. IR spectra were measured on a JASCO 302-A spectrophotometer in CHCl₃. UV spectra was obtained on a Hitachi UV-3200 spectrophotometer. NMR spectra were run on an AMX-400 Bruker instrument. Chemical shifts δ are shown in ppm relative to TMS as internal standard and coupling constant *J* are given in Hz. EI-, FAB-, and HREIMS were recorded on a JEOL JMS-HX-110 and JMS-DA-500 mass spectrometers. Silica gel 230-400 mesh (E. Merck) was used for column chromatography. Silica gel plates (Si 60 F₂₅₄, E. Merck) were used for TLC.

Plant Material

The whole plant material was collected in April 2004 from N.W.F.P Swat and identified as *Isatis costata* C. A. Mey by Dr. Ghosia Lutfullah, Centre of Biotechnology, University of Peshawar, Pakistan. A voucher specimen (BPU-105) is deposited in the Herbarium of the Department of Botany, University of Peshawar, Pakistan.

Extraction and Isolation

The shade-dried whole plant (17 kg) was chopped up and extracted three times with EtOH (60 L) at room temperature for 96 h. The ethanolic extract was evaporated *in vacuo* to give a dark greenish residue (400 g), which was partitioned between EtOAc and water. The aqueous fraction was made basic with 10% NH₄OH and the liberated bases extracted with CH₂Cl₂. The CH₂Cl₂ fraction (40 g) was subjected to column chromatography eluting with *n*-hexane-EtOAc mixtures in increasing order of polarity to afford six fractions F_{1} - F_{6} . Silica gel column chromatography of fraction F_{2} (eluted with 7:3 *n*-hexane-EtOAc) and elution with mixtures of *n*-hexane-EtOAc provided fractions F_{2A} (7:3) and fraction F_{2B} (5:5), respectively. Slow evaporation of fraction F_{2A} deposited pale yellow crystals of isatinone A (1, 11 mg). The fraction F_{2B} was rechromatographed over silica gel, again eluting with *n*-hexane-EtOAc mixtures. The eluent obtained from 3:7 *n*-hexane EtOAc provided isatinone B (**2**, 17 mg). The fraction F_3 obtained from *n*-hexane-EtOAc (6:4) was rechromatographed over silica gel using mixtures *n*-hexane-EtOAc (8:2 \rightarrow 3:7) as solvent to afford two successive fractions, the first of which, further on purification by column chromatography over silica gel and elution with 7:3 *n*-hexane-EtOAc afforded trisindoline (25 mg).

3-[(*E*)-methoxyphenylmethylidene]-1,3-dihydro-2*H*-indol-2-one (Isatinone A, **1**): C₁₆H₁₃NO₂; pale yellow amorphous solid; mp 178-179°C; UV (MeOH) λ_{max} 208, 231, 270 nm; IR ν_{max} (KBr): 3301, 1680, 1600, 1565, 1460 cm⁻¹; ¹³C-NMR δ : 167.1 (C-2), 103.1 (C-3), 124.0 (C-3a), 119.8 (C-4), 123.3 (C-5), 129.4 (C-6), 115.1 (C-7), 144.0 (C-7a), 148.7 (C-1'), 141.1 (C-2'), 124.5 (C-3'), 130.5 (C-4'), 130.8 (C-5'), 130.5 (C-6'), 124.5 (C-7'), 56.7 (OCH₃); EIMS, *m*/*z* 251 [M]⁺, 236, 209, 160, 131, 117, 92, 77; HREIMS: 251.0946 (calcd for C₁₆H₁₃NO₂, 251.0943). Complete assignments of ¹H-NMR and ¹H-¹H COSY data for **1** are described in Table 1. Important HMBC and NOE correlations are illustrated in Figure 2.

2-*Ethylhexyl* 2-{*4*-[2-oxo-1,2-dihydro-3*H*-indol-3-ylidene) (phenylmethoxy]phenyl} acetate (Isatinone *B*, **2**): C₃₁H₃₃NO₄; pale yellow amorphous solid; mp 189–191°C; $[\alpha]_D^{18}$ +89.7° (*c*. 0.02, MeOH); UV (MeOH) λ_{max} 205, 232, 275 nm; IR v_{max} (KBr): 3305, 1685, 1715, 1610, 1560, 1450 cm⁻¹; ¹³C-NMR δ : 165.3 (C-2), 103.9 (C-3), 124.1 (C-3a), 119.8 (C-4), 123.1 (C-5), 129.8 (C-6), 115.0 (C-7), 144.4 (C-7a), 149.4 (C-1'), 133.6 (C-2'), 129.4 (C-3'), 130.5 (C-4'), 130.9 (C-5'), 130.5 (C-6'), 129.4 (C-7'), 141.0 (C-1''), 115.0 (C-2''), 130.5 (C-3''), 124.1 (C-4''), 130.5 (C-5''), 115.0 (C-6''), 49.6 (C-7''), 169.3 (C-8''), 69.1 (C-1'''), 40.2 (C-2'''), 31.6 (C-3'''), 30.1 (C-4'''), 24.9 (C-5'''), 11.4 (C-6'''), 24.0 (C-1'''), 14.4 (C-2''''); EIMS, *m*/*z* 483 [M]⁺, 349, 321, 311, 293, 236, 160, 131, 116, 91, 77. Negative HRFABMS: 482.2328 (calcd 482.2331 for C₃₁H₃₂NO₄). Complete assignments of ¹H-NMR and ¹H-¹H COSY data for **2** are described in Table 1. Important HMBC and NOE correlations are illustrated in Figure 3.

Trisindoline: Colorless amorphous solid; UV (MeOH) λ_{max} 290, 280, 274, 254, 219 nm; IR ν_{max} (KBr): 3200, 1705, 1472 cm⁻¹; HREIMS: 363.1371 (calcd for C₂₄H₁₇N₃O, 363.1401); ¹³C- and ¹H-NMR data were identical with those reported in the literature [6].

Bioassays

The antifungal bioassay was performed on human, animal and plant pathogens. The crude extracts, compounds **1** and **2** and the standard drugs (each at a concentration of 400 μ g/mL of Sabourd Dextose Agar) were subjected to antifungal activity assays against *Trichophyton schoen leinii* ATCC 22775, *Aspergillus niger* ATCC 1015, *Pseudallescheria boydri* ATCC 44330, *Candida albicans* ATCC 10231, *Microsporum canis* ATCC 36299, *Trichophyton mentagrophytes* ATCC 28185, *Trichophyton simii* ATCC 25923, *Fusarium solan* ATCC 36031, *Macrophomina phaseolina* ATCC 53789, *Rhizoctonia solani* ATCC 76131, according to the established protocol [11]. The compounds **1** and **2** showed significant activity against *Trichophyton schoen leinii*, *Aspergillus niger*, *Candida albicans, Trichophyton simii*, *Macrophomina phaseolina*; moderate activity against *Pseudallescheria boydri*, *Trichophyton mentagrophytes*, *Rhizoctonia solani*, and weak activity against *Microsporum canis* and *Fusarium solan* (Table 2). It is important to note that compound **2** was more potent **1**, which is probably be due to the presence of the ester moiety.

References

- 1. Nasir, Y. J.; Ali, S. I. *Flora of Pakistan*; Ali, S. I.; Nasir, Y. J. (Eds.); National Herbarium Pakistan Agriculture Research Council: Islamabad, **1989**; Vol. 191, p. 94.
- Pinkas, M.; Peng, W.; Torck, M.; Trotin F. *Plants Medicinales Chinoises*; Maloin: Paris, 1996; p. 86.
- 3. Jiangsu New Medical College. *Dictionary of Chinese Crude Drugs*; Shanghai Scientific and Technological Press: Shanghai, **1985**; pp. 1250-1252.
- 4. Institute of Materia Medica. *Chinese Academy of Medical Sciences*; Zhong, Y. Z. (Ed.); Peoples Health Press: Beijing, **1979**; Vol. 1, p. 453.
- Ministry of Public Health. *Chinese Pharmacopoeia*; Peoples Health Press: Beijing, **1990**; Part 1, p. 172.
- 6. Kobayashi, M.; Aoki, S.; Gato, K.; Matsunami, K.; Kurosu, M.; Kitagawa, I. Trisindoline, a new antibiotic indole trimer, produced by a bacterium of *Vibrio* sp. seperated from the marine sponge *Hyrtios altum. Chem. Pharm. Bull.* **1994**, *42*, 2449-2451.
- 7. Kim, W. G.; Lee, I. K.; Kim, J. P.; Ryoo, I. J.; Koshino, H.; Yoo, I. D. New Indole derivatives with free radical Scavenging activity from *Agrocybe cylindracea*. *J. Nat. Prod.* **1997**, *60*, 721-723.
- 8. Thielke, D.; Wegener, J.; Winterfeldt, E. The steric course of methylene-lactum rearrangements in rigid policyclic system. *Chem. Ber.* **1975**, *108*, 1791-1802.
- 9. Fatima, I.; Ahmad, I.; Nawaz, S. A.; Malik, A.; Afza, N.; Luttfullah, G.; Choudhary, M. I. Enzyme inhibition studies of oxindole alkaloids from *Isatis costata*. *Heterocycles* **2006**, *68*, 1421-1428.
- Wing, S. C.; Raymond, J. P.; Mark, R. P. A Tandem Heck-Carbocyclization/ Suzuki-Coupling approach to the Stereoselective synthesis of asymmetric 3, 3-(Diarylmethylene)indolinones. J Org. Chem. 2005, 70, 3741-3744.
- 11. Choudhary, M. I.; Dur-e-Shahwar; Parveen, Z.; Jabbar, A.; Ali, I.; Atta-ur-Rahman. Antifungal steroidal lactones from *Withania coagulance*. *Phytochemistry* **1995**, *40*, 1243-1246.

Sample Availability: Samples of the compounds are available from the corresponding author.

© 2007 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.