molecules

ISSN 1420-3049
http://www.mdpi.org

Full Paper

Asymmetric Synthesis of the Epimeric (3S)-3-((E)-Hex-1-enyl)-2-methylcyclohexanones

Freek A. Vrielynck and Pierre J. De Clercq*

Ghent University, Department of Organic Chemistry, Laboratory for Organic Synthesis, Krijgslaan 281 (S4), B-9000 Gent, Belgium

* Author to whom correspondence should be addressed. E-mail: pierre.declercq@UGent.be

Received: 9 January 2007; in revised form: 20 February 2007 / Accepted: 20 February 2007 /
Published: 21 February 2007

Abstract

The asymmetric rhodium-catalysed 1,4-addition of alkenylzirconium reagents to 2-cyclohexenone can be useful in the synthesis of 3-alkenyl-2-methylcyclohexanones, provided that formaldehyde is used in trapping the intermediate zirconium enolates. In this manner a four-step sequence leading to the two epimeric 3-hexenyl-2methylcyclohexanones in enantiomeric form was developed.

Keywords: Enantioselective 1,4-addition, zirconium O-enolate trapping, 2-cyclohexenone.

Introduction

In the context of the development of CD-ring modified structural analogs of calcitriol, the hormonally active metabolite of vitamin D_{3} [1], we required the epimeric ketones $\mathbf{4 a}$ and $\mathbf{4 b}$ (Scheme 1) in enantiopure form. Both cyclohexanones are being converted to derivatives in which the bicyclic CD-entity is replaced by a single six-membered D-ring and in which the hexenyl substituent serves as a latent aldehyde for the introduction of the A-ring [2]. We describe herein in detail a synthesis of $\mathbf{4 a}$ and $\mathbf{4 b}$ featuring a highly enantioselective 1,4-addition of alkenylzirconocene to 2-cyclohexenone catalysed by the chiral rhodium complex generated from $[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}$ and (R)-BINAP [3], followed by trapping of the O-enolate with formaldehyde.

Results and Discussion

The synthesis of the two epimeric cyclohexanones $\mathbf{4 a}$ and $\mathbf{4 b}$ rests on the asymmetric $1,4-$ introduction of the hexenyl side chain on 2-cyclohexenone followed by trapping of the resulting metal O-enolate with an electrophilic reagent.

Scheme 1. Synthetic pathway to epimeric (3S)-3-((E)-hex-1-enyl)-2-methylcyclohexanones $\mathbf{4 a}$ and $\mathbf{4 b}$.

$3 a \mathbf{a}$
3ab
4a

1b $\mathrm{R}=\mathrm{H}$
 C

3ba

3bb

4b
(a) $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}, n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C}=\mathrm{CH}, \mathrm{THF}, \mathrm{rt}, 45 \mathrm{~min} ;\left[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}_{2},(R)-\mathrm{BINAP}, \mathrm{THF}, \mathrm{rt}, 30 \mathrm{~min} ; 2-\right.$ cyclohexenone, rt, 3 h . (b) $\mathrm{CH}_{2} \mathrm{O}$ (from paraformaldehyde), $-78{ }^{\circ} \mathrm{C}$ (89\%). (c) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ (a: 96%; b: 99\%). (d) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$, reflux, 2 h (a: 95\%; b: 98\%). (e) (COCl$)_{2}$, DMSO, $\mathrm{Et}_{3} \mathrm{~N},-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$ (a: 89%; b: 96%).

Among several known enantioselective 1,4-additions of organometallic reagents to α, β-unsaturated ketones, we obtained the best results with the recently reported rhodium(I)-catalysed addition of alkenylzirconocene chlorides with BINAP as chiral ligand [3,4]. This result also follows Nicolaou's report of the tandem reaction of the rhodium-catalysed asymmetric additions of alkenylzirconium reagents followed by trapping of the zirconium enolate by aldehydes [5]. In our case, the 1,4 -addition was performed on 2-cyclohexenone using (E)-1-hexenylzirconocene chloride [6], prepared from 1-
hexyne and bis(cyclopentadienyl)zirconium chloride hydride $\left(\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}\right.$ or Schwartz reagent) in the presence of a catalytic amount of the $\mathrm{Rh}(\mathrm{I})$-complex $[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}$ and (R)-BINAP as a chiral ligand. As previously observed by Schwartz, we were unable to directly alkylate the intermediate zirconium O-enolate [7]; however, reaction with gaseous formaldehyde at $-78{ }^{\circ} \mathrm{C}$ led, after acid work-up, to a 2.7:1 mixture (89% yield) of $\mathbf{1 a}$ and $\mathbf{1 b}$, respectively [8], with an excellent ee (better than 96\%) [9]. The obtained mixture was readily separated by flash chromatography. The assignment of the transand cis-relationship to the alkyl substituents in the \mathbf{a} - and \mathbf{b}-series, respectively, rests on the analysis of NMR spectral data of $\mathbf{1 a}$. The diequatorial orientation in 1a follows from the large vicinal J-value of 11.7 Hz for the coupling between H_{a} and H_{b}. The same coupling in epimer $\mathbf{1 b}(5.3 \mathrm{~Hz})$ is indicative of a cis-relationship (Figure 1). The absolute configuration was assigned on the basis of the results obtained by Oi and Inoue [3].

Figure 1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ structural assignment of $\mathbf{1 a}$.

Figure 2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ structural assignments of the intermediate alcohols 3aa, 3ab, 3ba, and 3bb.

3aa
$\delta \mathrm{H}_{\mathrm{a}}=3.88 \mathrm{ppm}$
$\Sigma J=25 \mathrm{~Hz}$
W-coupling with H_{b}

3ba
$\delta \mathrm{H}_{\mathrm{b}}=1.59 \mathrm{ppm}$
$\delta \mathrm{H}_{\mathrm{c}}=2.41 \mathrm{ppm}$
$\mathrm{H}_{\mathrm{a}}: \mathrm{dt}, \mathrm{J}=3.8,7.7 \mathrm{~Hz}$

3ab
$\delta \mathrm{H}_{\mathrm{a}}=3.15 \mathrm{ppm}$
$\Sigma J=39 \mathrm{~Hz}$

$\delta \mathrm{H}_{\mathrm{b}}=1.97 \mathrm{ppm}$
$\delta \mathrm{H}_{\mathrm{c}}=2.11 \mathrm{ppm}$
$H_{a}: d t, J=10.6,4.1 \mathrm{~Hz}$

The further conversion of $\mathbf{1 a}$ and $\mathbf{1 b}$ to $\mathbf{4 a}$ and $\mathbf{4 b}$, respectively, first involves the reduction of the mesylates $\mathbf{2 a}$ and $\mathbf{2 b}$, obtained by treatment with mesyl chloride and triethylamine in dichloromethane, to afford a mixture of the two epimeric alcohols. From 2a there was obtained in 95% yield a 1:4
mixture of 3aa and 3ab; from $\mathbf{2 b}$ there was obtained in 98% yield a 1:4 mixture of $\mathbf{3} \mathbf{b a}$ and $\mathbf{3 b b}$, respectively. Again the structural assignment of the four isomeric alcohols rested on ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis (Figure 3). Within the trans-series distinction between 3aa and 3ab readily follows from the coupling constant pattern of the H_{a} proton, which indicates an axial hydroxyl group in 3aa (cf. smaller sum of vicinal J-values for H_{a}) and an equatorial one in 3ab (cf. larger sum of vicinal J-values for H_{a}). Furthermore a characteristic long range W coupling is observed between H_{a} and H_{b} in 3aa. The structural assignment in the cis-series (3ba and 3bb) on the other hand rests on the observed nOe's in both derivatives, in particular between H_{a} and the olefinic proton of the hexenyl side-chain in 3ba. Finally, Swern oxidation of both mixtures led to the desired cyclohexanones $\mathbf{4 a}$ and $\mathbf{4 b}$ [10].

Conclusions

The two epimeric cyclohexanones $\mathbf{4 a}$ and $\mathbf{4 b}$ have been obtained in four steps starting from 2cyclohexenone. The synthesis was based on the very efficient asymmetric 1,4 -introduction of the 1 hexenyl chain using alkenylzirconocene and a chiral rhodium complex.

Experimental

General

Dichloromethane was distilled from CaH_{2}. Diethyl ether and tetrahydrofuran (THF) were distilled from benzophenone ketyl. TLC were run on glass plates precoated with silica gel (Merck, 60F-254). Column chromatography was performed on silica gel (Merck, 230-400 mesh). IR spectra (KBr films) were recorded on a Perkin-Elmer series 1600 FT-IR spectrometer. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on a Bruker AM-500 spectrometer operating at $500\left({ }^{1} \mathrm{H}\right)$ and $125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, respectively. Mass spectra (EI) were recorded on a Hewlett-Packard 5898A spectrometer at 70 eV .
(2R,3S)-3-((E)-Hex-1-enyl)-2-(hydroxymethyl)cyclohexanone (1a) and (2S,3S)-3-((E)-hex-1-enyl)-2(hydroxylmethyl)cyclohexanone (1b).

Dry formaldehyde was prepared as follows: paraformaldehyde is predried overnight in vacuo at 60 ${ }^{\circ} \mathrm{C}$ in a three-necked $100-\mathrm{mL}$, round-bottom flask. The flask is equipped with an inlet for N_{2} (dried over molecular sieves) and is connected via Teflon tubing to the reaction flask. The latter is then equipped with a CaCl_{2} drying tube. The entire system is evacuated, filled with N_{2} and the dried paraformaldehyde is depolymerised in a stream of N_{2} by heating at $180{ }^{\circ} \mathrm{C}$. To a suspension of $\mathrm{Cp}_{2} \mathrm{ZrHCl}(6.20 \mathrm{~g}, 24 \mathrm{mmol})$ in dry THF $(80 \mathrm{~mL})$ under Ar was added 1-hexyne ($2.76 \mathrm{~mL}, 24 \mathrm{mmol}$) and the mixture was stirred at rt for 45 minutes to give a solution of 1-hexenyl-zirconocene chloride. In a two-necked $250-\mathrm{mL}$ flask under $\mathrm{Ar},[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}(247 \mathrm{mg}, 1 \mathrm{mmol})$ and (R)-BINAP (749 mg, 1.2 mmol) were dissolved in dry THF (40 mL) and the solution was stirred at rt for 0.5 h . To the solution of rhodium catalyst, cyclohexenone ($1.94 \mathrm{~mL}, 20 \mathrm{mmol}$) and the solution of 1-hexenylzirconocene chloride were added and the mixture was stirred at rt for 3 h . The reaction mixture was cooled to -78 ${ }^{\circ} \mathrm{C}$ and quenched with gaseous dry formaldehyde (see above). After warming up the mixture to rt, an aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (3 mL) was added and the resulting mixture was stirred for $0.5 \mathrm{~h} . t-$ Butylmethyl ether (MTBE; 200 mL) was added and the precipitate formed was removed by filtration.

After removal of the solvent under reduced pressure, the residue was purified by flash chromatography on silica gel (n-pentane/EtOAc, $83: 17$ to 75:25) to give cyclohexanones $\mathbf{1 a}(2.70 \mathrm{~g})$ and $\mathbf{1 b}(1.04 \mathrm{~g})$ in 89\% total yield.

1a: R_{f} (isooctane/EtOAc, 1:1) 0.38; $[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}-10.0$ (c 1.0, CHCl_{3}); IR v 3493 (br, m), 2929 (vs), 2871 (vs), 1701 (vs), 1459 (m), 1328 (m), 1222 (m), 1085 (m), 1052 (m), 969 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 5.29 ($1 \mathrm{H}, \mathrm{dt}, J=15.2,6.7 \mathrm{~Hz}$), $5.01(1 \mathrm{H}, \mathrm{ddt}, J=15.2,8.8,1.2 \mathrm{~Hz}$), $3.85(1 \mathrm{H}, \mathrm{ddd}, J=11.6,8.0,3.2$ $\mathrm{Hz}), 3.73(1 \mathrm{H}, \mathrm{dt}, J=11.6,6.4 \mathrm{~Hz}), 2.85(1 \mathrm{H}, \mathrm{dd}, J=8.0,6.4 \mathrm{~Hz}), 2.15(1 \mathrm{H}$, app. d, $J=13.4 \mathrm{~Hz})$, 2.04 (1 H , dddd, $J=11.7,11.5,8.8,3.7 \mathrm{~Hz}$), $1.86(3 \mathrm{H}, \mathrm{m}), 1.75(1 \mathrm{H}, \mathrm{tdd}, J=13.4,6.0,1.0 \mathrm{~Hz}), 1.45$ $(2 \mathrm{H}, \mathrm{m}), 1.22(4 \mathrm{H}, \mathrm{m}), 1.19(1 \mathrm{H}, \mathrm{tt}, J=13.5,3.7 \mathrm{~Hz}), 1.11(1 \mathrm{H}, \mathrm{tdd}, J=13.4,11.5,3.7 \mathrm{~Hz}), 0.85(3$ $\mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 212.7(\mathrm{C}=\mathrm{O}), 132.4(=\mathrm{CH}), 131.8(=\mathrm{CH}), 60.6\left(\mathrm{CH}_{2}\right), 56.5$ $(\mathrm{CH}), 45.0(\mathrm{CH}), 41.9\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right)$ ppm; MS m/z (\%) 210 (${ }^{+}$, 3), 192 (8), 179 (100), 163 (6), 149 (13), 135 (26), 123 (54), 110 (33), 97 (21), 79 (81), 67 (97), 55 (87), 41 (99).

1b: R_{f} (isooctane/EtOAc, 1:1) 0.28; [$\left.\alpha\right]_{\mathrm{D}}{ }^{\mathrm{rt}}+7.0$ (c 0.9, CHCl_{3}); IR v 3408 (br, m), 2956 (vs), 2930 (vs), 2873 (vs), 1707 (vs), 1460 (m), 1379 (m), 1312 (m), 1238 (w), 1138 (m), 1025 (s), 969 (s) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}-$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 5.26(1 \mathrm{H}, \mathrm{dt}, J=15.2,6.4 \mathrm{~Hz}), 5.17(1 \mathrm{H}, \mathrm{dd}, J=15.2,8.9 \mathrm{~Hz}), 4.00(1 \mathrm{H}, \mathrm{ddd}, J=$ $11.5,8.8,2.1 \mathrm{~Hz}$), $3.34(1 \mathrm{H}, \mathrm{ddd}, J=11.5,8.5,5.3 \mathrm{~Hz}$), $2.42(1 \mathrm{H}, \mathrm{dq}, J=8.9,3.6 \mathrm{~Hz}), 2.36(1 \mathrm{H}, \mathrm{dtd}$, $J=8.8,5.3,1.0 \mathrm{~Hz}$), $2.17(1 \mathrm{H}$, app. d, $J=13.8 \mathrm{~Hz}), 1.99(1 \mathrm{H}$, app. d, $J=5.3 \mathrm{~Hz}), 1.82(3 \mathrm{H}, \mathrm{m}), 1.58$ $(1 \mathrm{H}, \mathrm{m}), 1.30(3 \mathrm{H}, \mathrm{m}), 1.19(4 \mathrm{H}, \mathrm{m}), 0.83(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 212.0(\mathrm{C}=\mathrm{O})$, $133.1(=\mathrm{CH}), 128.4(=\mathrm{CH}), 61.5\left(\mathrm{CH}_{2}\right), 55.8(\mathrm{CH}), 43.6(\mathrm{CH}), 41.7\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right)$, $31.7\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right) \mathrm{ppm} ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 210\left(\mathrm{M}^{+}, 2\right), 192(10), 179(14), 163$ (6), 149 (9), 135 (32), 123 (50), 110 (98), 107 (29), 97 (47), 86 (48), 79 (83), 67 (100), 55 (82), 41 (98).
((1R,2S)-2-((E)-Hex-1-enyl)-6-oxocyclohexyl)methyl methanesulfonate (2a) and ((1S,2S)-2-((E)-hex-1-enyl)-6-oxocyclohexyl)methyl methanesulfonate (2b)

To an ice-cold solution of alcohol 1a ($458 \mathrm{mg}, 2.18 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.61 \mathrm{~mL}, 4.36 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{~mL})$ was added $\mathrm{MsCl}(0.25 \mathrm{~mL}, 3.27 \mathrm{mmol})$. After stirring for 0.5 h , the reaction mixture was quenched with an aqueous saturated NaHCO_{3} solution and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were consecutively washed with a HCl solution ($0.5 \mathrm{M} ; 5 \mathrm{~mL}$) and a saturated NaHCO_{3} solution (8 mL), dried over anhydrous MgSO_{4} and concentrated under reduced pressure to give mesylate 2a ($604 \mathrm{mg}, 96 \%$). The same procedure applied to alcohol $\mathbf{1 b}$ afforded mesylate $\mathbf{2 b}$ as a solid in 99% yield.

2a: R_{f} (isooctane/EtOAc, 6:4) 0.37; $[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}-17.0\left(c 1.0, \mathrm{CH}_{3} \mathrm{OH}\right.$); IR $\vee 2956$ (s), 2931 (s), $2860(\mathrm{~m})$, 1715 (vs), 1458 (m), 1356 (vs), 1251 (vw), 1174 (vs), 974 (s), 950 (s), 823 (w), 529 (s) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.37(1 \mathrm{H}, \mathrm{dt}, J=15.3,6.6 \mathrm{~Hz}), 4.95(1 \mathrm{H}, \mathrm{dd}, J=15.3,9.0 \mathrm{~Hz}), 4.32(1 \mathrm{H}, \mathrm{dd}, J=9.5,1.9$ $\mathrm{Hz}), 4.21(1 \mathrm{H}, \mathrm{dd}, J=9.5,5.7 \mathrm{~Hz}), 2.49(3 \mathrm{H}, \mathrm{s}), 2.15(1 \mathrm{H}, \mathrm{app} . \mathrm{d}, J=13.9 \mathrm{~Hz}), 2.02(1 \mathrm{H}, \mathrm{tdd}, J=$ $11.8,9.0,3.7 \mathrm{~Hz}$), $1.90(2 \mathrm{H}, \mathrm{m}), 1.75(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=11.8,5.7,1.9), 1.69(1 \mathrm{H}, \mathrm{td}, J=13.9,6.0 \mathrm{~Hz})$, $1.42(2 \mathrm{H}, \mathrm{m}), 1.27(4 \mathrm{H}, \mathrm{m}), 1.15(1 \mathrm{H}, \mathrm{qt}, J=14.2,3.5 \mathrm{~Hz}), 1.02(1 \mathrm{H}, \mathrm{qd}, J=12.9,3.3 \mathrm{~Hz}), 0.91(3$
$\mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 206.5(\mathrm{C}=\mathrm{O}), 132.9(=\mathrm{CH}), 131.0(=\mathrm{CH}), 66.0\left(\mathrm{OCH}_{2}\right), 53.4$ $(\mathrm{CH}), 44.4(\mathrm{CH}), 41.2\left(\mathrm{CH}_{2}\right), 36.3\left(\mathrm{SCH}_{3}\right), 32.4\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 22.4$ $\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; MS m/z (\%) $289\left(\mathrm{MH}^{+}, 8\right), 205$ (4), 192 (79), 179 (17), 163 (34), 149 (36), 135 (65), 122 (66), 107 (36), 93 (43), 79 (100), 67 (42), 55 (46), 41 (47).

2b: mp $39{ }^{\circ} \mathrm{C}$; R_{f} (isooctane/EtOAc, 6:4) 0.37; $[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}-28.5$ (c 1.0, CH3OH); IR v 2956 (s), 2932 (s), 2873 (m), 1711 (vs), 1459 (w), 1358 (vs), 1210 (vw), 1177 (vs), 1142 (vw), 959 (vs), 866 (w), 825 (w), $528(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.32(1 \mathrm{H}, \mathrm{dt}, J=-15.1,6.8 \mathrm{~Hz}), 5.07(1 \mathrm{H}, \mathrm{dd}, J=15.1,9.7$ $\mathrm{Hz}), 4.51(1 \mathrm{H}, \mathrm{dd}, J=10.2,6.5 \mathrm{~Hz}), 4.00(1 \mathrm{H}, \mathrm{dd}, J=10.2,6.8 \mathrm{~Hz}), 2.61(1 \mathrm{H}, \mathrm{dq}, J=9.7,3.4 \mathrm{~Hz})$, $2.48(1 \mathrm{H}$, app. q, $J=6.2 \mathrm{~Hz}), 2.26(3 \mathrm{H}, \mathrm{s}), 2.11(1 \mathrm{H}$, app. d, $J=13.2 \mathrm{~Hz}), 1.80(2 \mathrm{H}, \mathrm{m}), 1.73(1 \mathrm{H}$, td, $J=13.4,6.0 \mathrm{~Hz}), 1.51(1 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{m}), 1.18(4 \mathrm{H}, \mathrm{m}), 0.84(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 208.0(\mathrm{C}=\mathrm{O}), 134.9(=\mathrm{CH}), 126.3(=\mathrm{CH}), 68.0\left(\mathrm{OCH}_{2}\right), 52.4(\mathrm{CH}), 43.4(\mathrm{CH}), 41.5$ $\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{SCH}_{3}\right), 32.3\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right)$, $31.2\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; MS m/z (\%) 256 (5), 223 (4), 208 (14), 192 (24), 149 (24), 135 (16), 123 (14), 105 (16), 91 (35), 79 (56), 67 (51), 55 (76), 41 (100).
(2S,3S)-3-((E)-Hex-1-enyl)-2-methylcyclohexanol (3aa, 3ab) and (2R,3S)-3-((E)-hex-1-enyl)-2-methylcyclohexanol (3ba, 3bb)
$\mathrm{LiAlH}_{4}(143 \mathrm{mg}, 3.76 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(7.5 \mathrm{~mL})$ was refluxed for 30 min . Methanesulfonate 2a ($546 \mathrm{mg}, 1.89 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(7.5 \mathrm{~mL}$) was dropwise added at reflux temperature over a period of 10 min . The reaction mixture was refluxed for 2 h , then cooled to $0^{\circ} \mathrm{C}$ and quenched by the sequential addition of $\mathrm{H}_{2} \mathrm{O}(145 \mu \mathrm{~L}), \mathrm{NaOH}(15 \%$ solution; $145 \mu \mathrm{~L})$ and $\mathrm{H}_{2} \mathrm{O}(300 \mu \mathrm{~L})$. After stirring at rt for 1 h , the white precipitate was removed by filtration over Celite ${ }^{\circledR}$ and washed with EtOAc. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel (n-pentane/EtOAc, 9:1) to give alcohols 3aa (70 mg) and 3ab (285 mg) in 96% total yield. The same procedure applied to methanesulfonate $\mathbf{2 b}(1.06 \mathrm{~g})$ afforded alcohols $\mathbf{3 b a}(141 \mathrm{mg})$ and $\mathbf{3 b b}$ (563 mg) in 98% total yield.

3aa: R_{f} (isooctane/EtOAc, 6:4) 0.54; [$\left.\alpha\right]_{\mathrm{D}}{ }^{\mathrm{rt}}-45.7$ (c 1.0, CHCl_{3}); IR v 3392 (br, m), 2957 (s), 2928 (vs), 2872 (s), 1456 (m), 1376 (w), 1212 (w), 963 (w), 879 (w) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.37$ ($1 \mathrm{H}, \mathrm{dt}$, $J=15.2,6.2 \mathrm{~Hz}$), 5.15 ($1 \mathrm{H}, \mathrm{ddt}, J=15.2,8.6,1.1$), $3.88(1 \mathrm{H}, \mathrm{m}, \Sigma \mathrm{J}=25 \mathrm{~Hz}), 1.96(3 \mathrm{H}, \mathrm{m}), 1.81$ (1 H, app. d, $J=13.2 \mathrm{~Hz}$), $1.64(2 \mathrm{H}, \mathrm{m}), 1.46(2 \mathrm{H}, \mathrm{m}), 1.35-1.24(5 \mathrm{H}, \mathrm{m}), 1.11(1 \mathrm{H}, \mathrm{m}), 0.92(3 \mathrm{H}, \mathrm{d}, J$ $=7.0 \mathrm{~Hz}), 0.87(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 134.7(=\mathrm{CH}), 130.1(=\mathrm{CH}), 71.1(\mathrm{OCH})$, $41.7(\mathrm{CH}), 40.6(\mathrm{CH}), 33.3\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right), 19.6\left(\mathrm{CH}_{2}\right), 16.7$ $\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; MS m/z (\%) 196 (${ }^{+}$, <1), 178 (54), 163 (8), 149 (25), 135 (56), 121 (25), 111 (50), 93 (51), 79 (52), 67 (54), 55 (54), 41 (100).

3ab: R_{f} (isooctane/EtOAc, 6:4) 0.47; $[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}+12.3$ (c 1.0, CHCl_{3}); IR v 3350 (br, m), 2958 (s), 2926 (vs), 2857 (s), 1458 (m), 1376 (w), 1358 (w), 1294 (vw), 1117 (vw), 1032 (s), 966 (vs), 858 (vw$)_{\mathrm{cm}^{-1} \text {; }}$ ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.37(1 \mathrm{H}, \mathrm{dt}, J=15.2,6.7 \mathrm{~Hz}), 5.17(1 \mathrm{H}, \mathrm{ddd}, J=15.2,8.5,1.2), 3.15(1 \mathrm{H}, \mathrm{m}$, $\Sigma J=39 \mathrm{~Hz}), 1.96(3 \mathrm{H}, \mathrm{m}), 1.72(1 \mathrm{H}$, app. d, $J=13.0 \mathrm{~Hz}), 1.57(2 \mathrm{H}, \mathrm{m}), 1.43(1 \mathrm{H}, \mathrm{s}), 1.37-1.20(6$ $\mathrm{H}, \mathrm{m}), 1.10(1 \mathrm{H}, \mathrm{m}), 1.06(1 \mathrm{H}, \mathrm{m}), 0.97(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.87(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}$
$\left(\mathrm{CDCl}_{3}\right) \delta 134.0(=\mathrm{CH}), 130.4(=\mathrm{CH}), 76.1(\mathrm{OCH}), 47.3(\mathrm{CH}), 44.6(\mathrm{CH}), 35.5\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{2}\right)$, $32.2\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{2}\right)$, $22.2\left(\mathrm{CH}_{2}\right), 16.0\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; MS m/z (\%) $196\left(\mathrm{M}^{+}\right.$, <1), 178 (22), 163 (5), 149 (22), 135 (29), 121 (42), 108 (21), 93 (40), 79 (47), 67 (52), 55 (59), 41 (100).

3ba: R_{f} (isooctane/EtOAc, 8:2) 0.47; $[\alpha]_{\mathrm{D}}{ }^{\text {rt }}-40.3$ (c 1.0, CHCl_{3}); IR $v 3349$ (br, m), 2956 (s), 2928 (vs), 2872 (s), 1460 (m), 1377 (w), 1142 (w), 1042 (m), 1017 (m), 967 (s) cm ${ }^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $5.40(2 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{td}, J=7.7,3.8 \mathrm{~Hz}), 2.41(1 \mathrm{H}, \mathrm{m}), 2.20(2 \mathrm{H}, \mathrm{m}), 1.85(1 \mathrm{H}, \mathrm{m}), 1.59(3 \mathrm{H}$, m), $1.50(2 \mathrm{H}, \mathrm{m}), 1.41-1.28(5 \mathrm{H}, \mathrm{m}), 0.90(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.89(3 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 131.2(=\mathrm{CH}), 130.9(=\mathrm{CH}), 72.4(\mathrm{CH}), 41.8(\mathrm{CH}), 41.6(\mathrm{CH}), 32.7\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2}\right)$, $31.9\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right)$, $20.4\left(\mathrm{CH}_{2}\right), 14.5\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$, MS m/z (\%) $196\left(\mathrm{M}^{+}\right.$, 4), 178 (14), 163 (4), 149 (17), 135 (22), 121 (42), 111 (39), 93 (42), 79 (48), 67 (47), 55 (49), 41 (100).

3bb: R_{f} (isooctane/EtOAc, 8:2) 0.47; $[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}-10.3$ (c 1.0, CHCl_{3}); IR $v 3350$ (br, m), 2928 (vs), 2860 (s), 1466 (m), 1447 (m), 1378 (w), 1342 (w), 1301 (w), 1119 (w), 1053 (m), 1016 (m), 968 (s) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.41(1 \mathrm{H}, \mathrm{dd}, J=15.5,5.3 \mathrm{~Hz}), 5.38(1 \mathrm{H}, \mathrm{dt}, J=15.5,5.8 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{dt}, J=$ $10.6,4.1 \mathrm{~Hz}), 2.11(1 \mathrm{H}, \mathrm{m}), 1.97(3 \mathrm{H}, \mathrm{m}), 1.72(1 \mathrm{H}, \mathrm{m}), 1.59(1 \mathrm{H}, \mathrm{app} . \mathrm{d}, \mathrm{J}=12.3 \mathrm{~Hz}), 1.42(1 \mathrm{H}$, m); 1.37-1.20 ($7 \mathrm{H}, \mathrm{m}$), $0.87(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 0.80(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $133.3(=\mathrm{CH}), 129.5(=\mathrm{CH}), 73.6(\mathrm{CH}), 42.8(\mathrm{CH}), 39.8(\mathrm{CH}), 32.4\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 24.8$ $\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right), 6.7\left(\mathrm{CH}_{3}\right) \mathrm{ppm} ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 196\left(\mathrm{M}^{+},<1\right), 178(40), 163$ (6), 149 (22), 135 (32), 122 (28), 111 (36), 108 (25), 93 (36), 79 (50), 67 (34), 55 (51), 41 (100).
(2S,3S)-3-((E)-Hex-1-enyl)-2-methylcyclohexanone (4a) and (2R,3S)-3-((E)-hex-1-enyl)-2-methylcyclohexanone (4b)

To a solution of $(\mathrm{COCl})_{2}(113 \mu \mathrm{~L}, 1.33 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was dropwise added a solution of dimethyl sulfoxide (DMSO; $189 \mu \mathrm{~L}, 2.66 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(750 \mu \mathrm{~L})$ at $-78{ }^{\circ} \mathrm{C}$. After 2 minutes of stirring, a mixture of alcohols 3aa and 3ab ($238 \mathrm{mg}, 1.21 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was dropwise added over a period of 5 min and the mixture was stirred for $15 \mathrm{~min} . \mathrm{Et}_{3} \mathrm{~N}(845 \mu \mathrm{~L}, 6.66$ mmol) was then added and the reaction mixture was stirred for an additional 5 min , followed by slow warming to rt . $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were concentrated under reduced pressure and the residue was diluted with t-butyl methyl ether (MTBE). After washing with $\mathrm{H}_{2} \mathrm{O}$, the organic layer was dried over anhydrous MgSO_{4} and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (n-pentane/EtOAc, 98:2) to give cyclohexanone $\mathbf{4 a}$ ($209 \mathrm{mg}, 89 \%$). The same procedure applied to the mixture of alcohols 3ba and $\mathbf{3 b b}$ afforded cyclohexanone $\mathbf{4 b}$ in 96% yield.

4a: R_{f} (isooctane/EtOAc, 8:2) 0.44; [$\left.\alpha\right]_{\mathrm{D}}{ }^{\mathrm{rt}}-12.0$ (c 1.0, $\mathrm{CH}_{3} \mathrm{OH}$); IR v 2930 (vs), 2863 (vs), 1712 (vs), 1450 (m), 1376 (w), 1329 (w), 1307 (w), 1216 (w), 1181 (w), 1128 (bw), 1017 (w), 969 (s) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.24(1 \mathrm{H}, \mathrm{dt}, J=15.2,6.6 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{dd}, J=15.2,8.4 \mathrm{~Hz}), 2.26(1 \mathrm{H}$, app. d, $J=$ 13.4 Hz), $1.92(2 \mathrm{H}, \mathrm{m}), 1.86(1 \mathrm{H}, \mathrm{td}, J=13.6,6.0 \mathrm{~Hz}), 1.77(1 \mathrm{H}, \mathrm{m}), 1.73(1 \mathrm{H}, \mathrm{m}), 1.56(1 \mathrm{H}, \mathrm{m})$, $1.48(1 \mathrm{H}, \mathrm{app} . \mathrm{d}, J=13.0 \mathrm{~Hz}), 1.32(1 \mathrm{H}, \mathrm{m}), 1.26(4 \mathrm{H}, \mathrm{m}), 1.17(1 \mathrm{H}, \mathrm{m}), 1.11(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz})$,
$0.86(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 209.5(\mathrm{C}=\mathrm{O}), 133.4(=\mathrm{CH}), 130.9(=\mathrm{CH}), 50.4(\mathrm{CH})$, $49.4(\mathrm{CH}), 41.5\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right), 13.0$ $\left(\mathrm{CH}_{3}\right) \mathrm{ppm} ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 194$ ($\mathrm{M}^{+}, 9$), 137 (4), 123 (30), 110 (19), 96 (4), 81 (45), 79 (32), 67 (100), 47 (67).

4b: R_{f} (isooctane/EtOAc, 8:2) 0.44; [$\left.\alpha\right]_{\mathrm{D}}{ }^{\mathrm{rt}}-13.1$ (c 1.0, CHCl_{3}); IR $v 2957$ (s), 2930 (vs), 2872 (s), 1713 (vs), 1448 (m), 1377 (vw), 1312 (vw), 1222 (w), 1141 (w), 1078 (w), 995 (w), 968 (m) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.32(1 \mathrm{H}, \mathrm{dtd}, J=15.3,6.8,1.1 \mathrm{~Hz}), 5.20(1 \mathrm{H}, \mathrm{ddd}, J=15.3,8.8,0.9 \mathrm{~Hz}), 2.36(1 \mathrm{H}$, $\mathrm{m}), 2.20(2 \mathrm{H}, \mathrm{m}), 1.87(3 \mathrm{H}, \mathrm{m}), 1.65(1 \mathrm{H}, \mathrm{m}), 1.44(3 \mathrm{H}, \mathrm{m}), 1.22(4 \mathrm{H}, \mathrm{m}), 0.97(3 \mathrm{H}, \mathrm{dd}, J=6.8$, $1.3 \mathrm{~Hz}), 0.83(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 210.6(\mathrm{C}=\mathrm{O}), 133.1(=\mathrm{CH}), 129.0(=\mathrm{CH})$, $48.5(\mathrm{CH}), 47.0(\mathrm{CH}), 41.0\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 14.1$ $\left(\mathrm{CH}_{3}\right), 12.9\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; MS m/z (\%) $194\left(\mathrm{M}^{+}, 8\right), 179$ (2), 149 (5), 138 (3), 123 (34), 110 (22), 95 (14), 81 (57), 67 (67), 55 (49), 49 (100), 41 (93).

Acknowledgements

F. V. thanks the IWT for a scholarship.

References and Notes

1. (a) Proceedings of the 12th Workshop on Vitamin D; Bouillon, R., Norman, A. W., Pasqualini, J. R., Eds.; J. Steroid Biochem. Mol. Biol. 2004, 89-90, 1-633, and the prior 11 volumes in this series; (b) Feldman, D., Glorieux, F. H., Pike, J. W., Eds.; Vitamin D; Academic Press: San Diego, 1997.
2. Gabriëls. S.; Van Haver, D.; Vandewalle, M.; De Clercq, P.; Verstuyf, A.; Bouillon, R. Chem. Eur. J. 2001, 7, 520-532.
3. Oi, S.; Sato, T.; Inoue, Y. Tetrahedron Lett. 2004, 45, 5051-5055.
4. Kakuuchi, A.; Taguchi, T.; Hanzawa, Y. Tetrahedron 2004, 60, 1293-1299.
5. Nicolaou, K. C.; Tang, W.; Dagneau, P.; Faraoni, R. Angew. Chem. Int. Ed. 2005, 44, 3874-3879.
6. Under the same conditions the introduction of the hexenyl side chain on 2-methyl-2cyclohexenone was not successful.
7. Schwartz, J.; Hayasi, Y. Tetrahedron Lett. 1980, 21, 1497-1500.
8. Loots, M. J.; Schwartz, J. Tetrahedron Lett. 1978, 4381-4382.
9. The ee was determined by HPLC based on the racemate using a chiral stationary phase column (Daicel CHIRALPAK® AD-H, eluent: n-hexane/EtOH, 95:5).
10. The ee of $\mathbf{4 a}$ and $\mathbf{4} \mathbf{b}$ was determined by HPLC based on the racemate using a chiral stationary phase column (Daicel CHIRALPAK® AD-H, eluent: n-hexane/EtOH, 99:1); for 4a: 96.3% ee, for 4b: better than 91% ee.

Sample Availability: No samples available.
© 2007 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.

