ISSN 1420-3049
© 2007 by MDPI www.mdpi.org/molecules
Full Research Paper

Synthesis and Anti-tumor Activities of Novel [1,2,4]triazolo[1,5-a]pyrimidines

Xiang-Lin Zhao ${ }^{\dagger}$, Yan-Fang Zhao ${ }^{\ddagger}$, Shu-Chun Guo, Hai-Sheng Song, Ding Wang and Ping Gong*
School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, 110016 Shenyang, Liaoning, P. R. China; Fax: (+86) 24-23986426/23882925, Phone: (+86) 24-23986426; E-mail: ${ }^{\dagger}$ smoothdagger@126.com; ${ }^{\ddagger}$ yanfangzhao@126.com

* Author to whom correspondence should be addressed; E-mail: gongpinggp@126.com

Received: 8 May 2007 / Accepted: 24 May 2007 / Published: 25 May 2007

Abstract

A series of novel [1,2,4]triazolo[1,5-a]pyrimidine derivatives has been designed and synthesized in order to find novel anti-tumor compounds. The structures of all the compounds were confirmed by IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$, MS and elemental analysis. Their anti-tumor activities against cancer cell lines (HT-1080 and Bel-7402) were tested by the MTT method in vitro. Among them, compound 19 displayed the best anti-tumor activity with IC_{50} values of $12.3 \mu \mathrm{M}$ and $6.1 \mu \mathrm{M}$ against Bel-7402 and HT-1080 cell lines respectively.

Keywords: [1,2,4]triazolo[1,5-a]pyrimidines, Synthesis, antitumor activities

Introduction

Purine analogs are widely used against various diseases, particularly cancer. The clinical application of 6-mercaptopurine [1] and thioguanine [2] in cancer treatment and the development of potent purine based CDK inhibitors, such as Purvalanols [3, 4], Olomoucine [3] and Roscovitine [5], together with other findings based on the purine scaffold, have largely inspired and directed parallel developments in the chemistry and anti-tumor research of related heterocyclic analogs, including pyrrolo-pyrimidines [6], pyrazolo-pyrimidines [7, 8], imidazo-pyridines [9], triazolo-pyrimidines [10], pyrazolo-pyridazines [11] and imidazo-pyrazines [12].
[1,2,4]Triazolo[1,5-a]pyrimidines, a subtype of purine bioisosteric analogs, were also reported to possess potential anti-tumor activities, especially those bearing functional groups at C-5, C-6 or C-7 positions [13-15]. However, substitutions at the C-2 position seemed to be less attractive. Recently,
some [1,2,4]triazolo[1,5-a]pyrimidines bearing functional group at C-2 and C-7 positions, were disclosed for their good antiproliferative ability [16, 17], which greatly encouraged us to explore more potent analogs of such structures. Therefore, we carried out a series of modifications upon the [1,2,4]triazolo[1,5-a]pyrimidine scaffold by introducing functional groups into C-2 and C-7 positions. Herein, we report the synthesis and in vitro anti-tumor evaluation of a new series of 7 -anilino-5-methyl-2-(3-((5-(substituted-aminomethyl)furan-2-yl)methylthio)propyl)[1,2,4]triazol[1,5a]pyrimidines (6-20).

Results and Discussion

Chemistry

The synthetic route for the target compounds is shown in Scheme 1.
Scheme 1. Synthesis of target compounds.

Reagents and conditions: a) aminoguanidine, γ-butyrolactone, Py, reflux, 10 h ; b) ethyl acetoacetate, acetic acid, reflux, 30 h, c) methanolic ammonia, room temperature, 24 h ; d) POCl_{3}, reflux, 3 h ; e) $\mathrm{R}^{1} \mathrm{NH}_{2},{ }^{\mathrm{i}} \mathrm{PrOH}, 50^{\circ} \mathrm{C}$, 3 h ; f) furan-2ylmethanethiol, $\mathrm{NaH}, \mathrm{DMF}, 50^{\circ} \mathrm{C}, 0.5 \mathrm{~h} ; \mathrm{g}$) $\mathrm{HCHO}, \mathrm{R}^{2} \mathrm{R}^{3} \mathrm{NH}, \mathrm{AcOH}, 50^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

Commercially available γ-butyrolactone was first transformed into the substituted [1,2,4]triazole 1 with aminoguanidine carbonate in the presence of pyridine in 40% yield. Following the procedure reported by Okabe [18], condensation of $\mathbf{1}$ with ethyl acetoacetate was carried out in acetic acid at reflux to give a mixture of $\mathbf{2}$ and $\mathbf{2}^{\prime}($ the acetylated product of $\mathbf{2}$), which further treated with methanolic
ammonia to give $\mathbf{2}$ in 88% yield. Subsequent treatment of $\mathbf{2}$ with phosphorus oxychloride afforded $\mathbf{3}$ in 94% yield. Displacement of the chloro group of $\mathbf{3}$ with various anilines provided the intermediate $\mathbf{4 a}$ 4c in 87-93\% yields.

Etherification of $\mathbf{4 a} \mathbf{- 4 \mathbf { c }}$ with (furan-2-yl)methanethiol in the presence of sodium hydride provided intermediate $\mathbf{5 a - 5 c}$. Subsequent aminomethylation of $\mathbf{5 a - 5 c}$ with various secondary amines and formaldehyde, followed by chromatographic purification gave the final products (6-20) in 45-80\% yields.

Anticancer activities

All target compounds (6-20) were evaluated for their anti-tumor activity in vitro by the MTT method. The IC_{50} values against Bel-7402 (Human Liver Cancer Cell Lines) and HT-1080 (Human Fibro Sarcoma Cell Lines) cell lines are summarized in Table 1.

Table 1. The anticancer activities of compounds 6-20.

Compd.	$\mathrm{IC}_{50}(\mu \mathrm{M})$		Compd.	$\mathrm{IC}_{50}(\mu \mathrm{M})$		
	Bel-7402	HT-1080		Bel-7402	HT-1080	
$\mathbf{6}$	>300	>300		$\mathbf{1 4}$	54.1	30.8
$\mathbf{7}$	72.5	52.1	$\mathbf{1 5}$	44.6	36.3	
$\mathbf{8}$	67.3	57.4		$\mathbf{1 6}$	42.1	32.2
$\mathbf{9}$	>300	237	$\mathbf{1 7}$	13.9	28.4	
$\mathbf{1 0}$	>300	280	$\mathbf{1 8}$	22.1	29.3	
$\mathbf{1 1}$	45.8	35.1		$\mathbf{1 9}$	12.3	6.1
$\mathbf{1 2}$	77.6	41.4	$\mathbf{2 0}$	22.2	14.8	
$\mathbf{1 3}$	>300	261.9		cisplatin	35.5	22.7

Table 1 shows that both substituents on the aniline ring and variations on 5"-furylmethyl of the side-chain have substantial influence on the anti-tumor activity. 3-Fluoro-phenylamino substituted series showed comparable or better anti-tumor activities than phenylamino substituted series (comparison of 7 and 11, 8 and 12). Morever, introduction of 4-fluoro-3-(trifluoromethyl)phenylamino group into the C-7 position was found to be quite favorable for increasing anti-tumor activity (comparison of 8 and 17, 14 and 20). Among this series, compound 19 showed the best anti-tumor activity with IC_{50} values of $12.3 \mu \mathrm{M}$ and $6.1 \mu \mathrm{M}$ against Bel-7402 and HT-1080 cell lines respectively, which was 4 times more potent than cisplatin. On the other hand, among the hydrophilic groups introduced into the 5 "-furylmethyl of the side-chain at C-2 position of the scaffold, piperidinyl, pyrrolidinyl, diethylamino and dimethylamino groups rendered better anti-tumor activity, while morpholino, 4-methylpiperizinyl resulted in drastic decrease in anti-tumor potency (comparison of 6, 9 and $\mathbf{7}, \mathbf{8}$). However, despite the negative effects of morpholino and 4-methylpiperizinyl substitutions, anti-tumor potency could be retained in the 4-fluoro-3-(trifluoromethyl)phenyl amino series as illustrated by the comparison of 6 and 15,13 and 18, suggesting that the contribution of 4-fluoro-3-
(trifluoromethyl)phenyl amino groups to the potency might partly compensate the negative effect of morpholino and 4-methylpiperizinyl substitution.

Conclusions

In conclusion, a novel series of $[1,2,4]$ triazolo[1,5-a]pyrimidines were synthesized and found to be active against tumor cell lines. Compounds with disubstituents on the aniline ring and piperidinyl, pyrrolidinyl, diethylamino or dimethylamino on the 5"-furylmethyl of the side-chain showed better anti-tumor activities than other series. Among this series, compound 19 showed the best anti-tumor activity and will be considered in a further study.

Experimental Section

General

Melting points were determined by the capillary tube method, and the thermometer was uncorrected. Mass spectra were obtained on an Agilent 1100 HPLC-MS instrument. ${ }^{1} \mathrm{H}$-NMR spectra were run in DMSO- $\mathrm{d}_{6}, \mathrm{CDCl}_{3}$, with TMS at the internal standard, on a Bruker ARX-300 instrument operating at 300 MHz . IR spectra (KBr disks) were recorded on a Bruker IFS 55 instrument. Elemental analysis was performed with a Carlo-Erba 1106 Elemental analysis instrument.

5-amino-3-(3-hydroxypropyl)-4H-[1,2,4]triazole (1)
A mixture of aminoguanidine ($65 \mathrm{~g}, 0.55 \mathrm{~mol}$), γ-butyrolactone ($43 \mathrm{~g}, 0.50 \mathrm{~mol}$) and pyridine (900 mL) was heated to reflux for 10 h . The resultant mixture was concentrated and filtered to give a pale solid. The mass product was recrystallized from absolute ethanol (150 mL) to obtain $\mathbf{1}(28 \mathrm{~g}, 40 \%)$ as a white solid, m. p.146-147 ${ }^{\circ} \mathrm{C}$, (lit. 149-150 ${ }^{\circ} \mathrm{C}$ [19]). MS [MH $\left.{ }^{+}\right](\mathrm{m} / \mathrm{z}): 142.1 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta$: 1.71 (pentad, 2H, CH2), $2.44\left(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.41\left(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 5.55 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 11.51 (br s, $1 \mathrm{H}, \mathrm{NH}$); Anal. calcd. for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}$: C 42.24, H 7.09, N 39.41; Found: C 42.01, H 7.01, N 39.23.

7-hydroxyl-2-(3-hydroxypropyl)-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidine (2)

A mixture of $1(28 \mathrm{~g}, 0.20 \mathrm{~mol})$, ethyl acetoacetate ($30.8 \mathrm{~g}, 0.24 \mathrm{~mol}$) and acetic acid (300 mL) was heated to reflux for 30 h and then concentrated, filtered to give a mixture of $\mathbf{2}$ and $\mathbf{2}^{\prime}$ as a pale yellow solid. Then the solid was added into the saturated ammonia methanol (300 mL) and stirred at room temperature for 24 h . The mixture was evaporated and water was added, which was then acidified with dilute hydrochloride solution to $\mathrm{pH} 5-6$, filtered and recrystallized from ethanol to give the product 2 ($37 \mathrm{~g}, 88 \%$), m. p. 204-206 ${ }^{\circ} \mathrm{C} . \mathrm{MS}\left[\mathrm{MH}^{+}\right](\mathrm{m} / \mathrm{z}): 208.1 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta: 1.85$ (pentad, 2 H , CH_{2}), $2.30\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{3}\right.$), $2.72\left(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.45\left(\mathrm{t}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, OH), 5.76 (s, $1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}$), 12.98 (br s, $1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{OH}$); Anal. calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$: C 51.92, H 5.81, N 26.91; Found: C 51.86, H 5.68, N 26.79.

7-chloro-2-(3-chloropropyl)-5-methyl-[1, 2, 4]triazolo[1,5-a]pyrimidine (3)

A mixture of $2(37 \mathrm{~g}, 0.18 \mathrm{~mol})$ and phosphorus oxychloride ($265 \mathrm{~g}, 1.70 \mathrm{~mol}$) was heated to reflux for 3 h , and then was concentrated in vacuo to result a red oil, which was poured into water, and extracted with chloroform ($250 \mathrm{~mL} \times 3$). The organic layer was then washed with water three times, dried with anhydrous magnesium sulfate and concentrated to give 3 ($41 \mathrm{~g}, 94 \%$) as a yellow solid (LC purity: 96%, MS $\left[\mathrm{MH}^{+}\right](\mathrm{m} / \mathrm{z}): 245.2$), which was directly used in next step without purification.

General procedure for the synthesis of 7-anilino-5methyl-2-(3-chloroproyl)-[1,2,4]triazolo[1,5a]pyrimidine (4a-4c)

A mixture of $\mathrm{R}^{1} \mathrm{NH}_{2}(44 \mathrm{mmol}), \mathbf{3}(10 \mathrm{~g}, 40 \mathrm{mmol})$ and isopropanol $(100 \mathrm{~mL})$ was heated at $50^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature and the following filtration, a yellow solid was obtained. Recrystallization of the solid from methanol gave $\mathbf{4 a} \mathbf{- 4} \mathbf{c}$ as slight yellow powder (87-93\%).

General procedure for the synthesis of 7-anilino-5-methyl-2-(3-(furan-2-ylmethylthio)propyl)[1,2,4] triazolo [1,5-a]pyrimidine (5a-5c)

Furan-2-ylmethanethiol ($8.6 \mathrm{~g}, 75 \mathrm{mmol}$) was added dropwise into a suspension of NaH (1.8 g 75 mmol) and dry DMF (80 mL) at room temperature. After the addition, the mixture was stirred for 5 min , and then $\mathbf{4 a - 4 c}(25 \mathrm{mmol})$ was added. The mixture was heated at $50^{\circ} \mathrm{C}$ for 30 min and was then poured into water. The brown oil which separated from water was triturated with diethyl ether, then filtered and recrystallized from ethyl acetate/cyclohexane to afford 5a-5c as gray solid ($80 \%-85 \%$).

General procedure for the synthesis of (6-20)

Formaldehyde ($0.6 \mathrm{~g}, 8 \mathrm{mmol}$) was added into the solution of $\mathrm{R}^{2} \mathrm{R}^{3} \mathrm{NH}(13 \mathrm{mmol})$ in acetic acid (20 mL). The mixture was stirred at $30^{\circ} \mathrm{C}$ for 10 min , and then $\mathbf{5 a}-\mathbf{5 c}(5 \mathrm{mmol})$ was added. After stirring at $50^{\circ} \mathrm{C}$ for 4 h , the mixture was concentrated in vacuo. The residue was taken up in water (50 mL), basified with concentrated aqueous sodium hydroxide to $\mathrm{pH} 9-10$, extracted with methylene dichloride, and then dried over magnesium sulfate. Evaporation of the solvent provided an oil residue, which was purified by chromatography to give the final products 6-20.

7-phenylamino-5-methyl-2-(3-((5-(morpholinomethyl)furan-2-yl)methylthio)propyl)-[1,2,4]triazolo

 [1,5-a]pyrimidine (6)Yield: 60%; m.p. $167-168{ }^{\circ} \mathrm{C}$; MS [MH^{+}] (m/z): 479.2; IR (KBr$)_{\mathrm{cm}}{ }^{-1}: 3445.5\left(v_{\mathrm{NH}}\right)$, 2963.4 ($\mathrm{v}_{\mathrm{CH} 3}$), 1609.3, $1576.3\left(v_{\mathrm{C}=\mathrm{C}}, \mathrm{v}_{\mathrm{C}=\mathrm{N}}\right), 1479.8\left(\delta_{\mathrm{CH} 2}\right), 1328.5\left(\mathrm{v}_{\mathrm{C}-\mathrm{N}}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta: 2.02$ (pentad, 2 H , CH_{2}), $2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.59\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right.$), $2.88\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), $3.61\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right.$), 3.73 (s, 2H, CH 2), $3.77\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.23(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}$, furyl-H), $6.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz}$, furylH), 6.34 (s, $1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}$), $7.29 \sim 7.48\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-5 \times \mathrm{H}\right.$); Anal. calcad. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C} 62.74, \mathrm{H} 6.32$, N 17.56 Found: C 62.59 H 6.25, N 17.45.

7-phenylamino-5-methyl-2-(3-((5-(piperidin-1-ylmethyl)furan-2-yl)methylthio)propyl)-[1,2,4]triazolo [1,5-a]pyrimidine (7)

Yield: 64\%; m.p. $169-170^{\circ} \mathrm{C}$; MS [MH^{+}] (m/z): 477.1; IR (KBr) cm ${ }^{-1}$: $3447.2\left(v_{\mathrm{NH}}\right), 2966.5\left(v_{\mathrm{CH} 3}\right)$, 1609.1, $1575.9\left(v_{\mathrm{C}=\mathrm{C}}, \mathrm{v}_{\mathrm{C}=\mathrm{N}}\right), 1478.0\left(\delta_{\mathrm{CH} 2}\right), 1329.6\left(\mathrm{v}_{\mathrm{C}-\mathrm{N}}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.64$ (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), 2.16 (pentad, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.49 (br s, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), $2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.64(\mathrm{t}, 2 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}, \mathrm{CH}_{2}$), $2.99\left(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.11(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0$ Hz , furyl-H), 6.14 (d, $1 \mathrm{H}, J=3.0 \mathrm{~Hz}$, furyl-H), $6.32\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 7.35 \sim 7.50(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-5 \times \mathrm{H})$; Anal. calcad. for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{OS}: \mathrm{C} 65.52$, H 6.77 , N 17.63 Found: C 65.44, H 6.63, N 17.60.

7-phenylamino-5-methyl-2-(3-((5-(pyrrolidin-1-ylmethyl)furan-2-yl)methylthio)propyl)-[1,2,4]triazolo [1,5-a]pyrimidine (8)

Yield: 64\%; m.p. $162-164^{\circ} \mathrm{C}$; MS $\left[\mathrm{MH}^{+}\right](\mathrm{m} / \mathrm{z}): 463.2$; IR (KBr$)^{\mathrm{cm}}{ }^{-1}: 3440.5\left(v_{\mathrm{NH}}\right), 2965.2\left(v_{\mathrm{CH} 3}\right)$, $1611.5,1576.1\left(v_{\mathrm{C}=\mathrm{C}}, \mathrm{v}_{\mathrm{C}=\mathrm{N}}\right)$, $1478.3\left(\delta_{\mathrm{CH} 2}\right), 1329.8\left(\mathrm{v}_{\mathrm{C}-\mathrm{N}}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.82\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$, 2.15 (pentad, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $2.64\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), $2.69\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right.$), 2.99 (t, 2H, J = $7.3 \mathrm{~Hz}, \mathrm{CH}_{2}$), $3.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.11(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}$, furyl-H), 6.17 (d, $1 \mathrm{H}, J=2.9 \mathrm{~Hz}$, furyl-H), $6.32\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 7.35 \sim 7.50(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-5 \times \mathrm{H})$; Anal. calcad. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{OS}: \mathrm{C} 64.91, \mathrm{H} 6.54, \mathrm{~N} 18.17$ Found: C 64.79, H 6.43, N 18.11.

7-phenylamino-5-methyl-2-(3-((5-((4-methylpiperazin-1-yl)methyl)furan-2-yl)methylthio)propyl)[1,2,4] triazolo[1,5-a]pyrimidine (9)

Yield: 73\%; m.p. $176-179^{\circ} \mathrm{C}$; MS [MH^{+}] (m/z): 492.2; IR (KBr) $\mathrm{cm}^{-1}: 3442.6\left(v_{\mathrm{NH}}\right)$, 2966.8 ($\mathrm{v}_{\mathrm{CH} 3}$), 1609.3, $1576.8\left(v_{\mathrm{C}=\mathrm{C}}, \mathrm{v}_{\mathrm{C}=\mathrm{N}}\right), 1479.2\left(\delta_{\mathrm{CH} 2}\right), 1329.0\left(\mathrm{v}_{\mathrm{C}-\mathrm{N}}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta: 2.01$ (pentad, 2 H , CH_{2}), 2.41 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.61 (t, $2 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}$), 2.74 (br s, $7 \mathrm{H}, \mathrm{CH}_{3}, 2 \times \mathrm{CH}_{2}$), 3.17 (br s, 4H, $2 \times \mathrm{CH}_{2}$), $3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 3.77 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $6.22\left(\mathrm{~m}, 2 \mathrm{H}\right.$, furyl- $2 \times \mathrm{H}$), 6.36 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}$), $7.29 \sim 7.48$ (m, 5H, Ph-5×H); Anal. calcad. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{7} \mathrm{OS}: \mathrm{C} 63.52$, H 6.77, N 19.94 Found: C 63.47, H 6.85, N 19.82.

7-(3-fluorophenylamino)-5-methyl-2-(3-((5-(morpholinomethyl)furan-2-yl)methylthio)propyl)-[1,2,4] triazolo[1,5-a]pyrimidine (10)

Yield: 80%; m.p. $173-175^{\circ} \mathrm{C}$; MS [$\left.\mathrm{MH}^{+}\right](\mathrm{m} / \mathrm{z})$: 497.1; IR (KBr) $\mathrm{cm}^{-1}: 3442.8\left(v_{\mathrm{NH}}\right)$, $2970.5\left(\mathrm{v}_{\mathrm{CH} 3}\right)$, 1608.0, $1575.2\left(v_{\mathrm{C}=\mathrm{C}}, \mathrm{v}_{\mathrm{C}=\mathrm{N}}\right), 1478.5\left(\delta_{\mathrm{CH} 2}\right), 1329.4\left(\mathrm{v}_{\mathrm{C}-\mathrm{N}}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 2.03$ (pentad, 2 H , CH_{2}), $2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $2.61\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), $2.70\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.90(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}$, CH_{2}), 3.66 (br s, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), $3.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $3.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.9 \mathrm{~Hz}$, furyl-H), $6.33\left(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}\right.$, furyl-H), $6.52\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 7.13\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{FH}}=8.4 \mathrm{~Hz}, J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathrm{Ph}-4 \mathrm{H}\right)$, 7.34 (br d, $1 \mathrm{H}, J_{\mathrm{FH}}=7.7 \mathrm{~Hz}, \mathrm{Ph}-2 \mathrm{H}$), 7.34 (br d, $1 \mathrm{H}, J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathrm{Ph}-6 \mathrm{H}$), 7.50 (dd, $1 \mathrm{H}, J_{1}=7.8 \mathrm{~Hz}$, $J_{2}=7.7 \mathrm{~Hz}, \mathrm{Ph}-5 \mathrm{H}$); Anal. calcad. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{FN}_{6} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C} 55.28, \mathrm{H} 5.89, \mathrm{~N} 16.92$ Found: C 55.21, H 5.78, N 16.79.

7-(3-fluorophenylamino)-5-methyl-2-(3-((5-(piperidin-1-ylmethyl)furan-2-yl)methylthio)propyl)[1,2,4] triazolo[1,5-a]pyrimidine (11)

Yield: 68\%; m.p. $170-172{ }^{\circ} \mathrm{C}$; MS [$\left.\mathrm{MH}^{+}\right](\mathrm{m} / \mathrm{z})$: 495.1; IR (KBr$)_{\mathrm{cm}}{ }^{-1}: 3444.5\left(v_{\mathrm{NH}}\right), 2963.5\left(\mathrm{v}_{\mathrm{CH} 3}\right)$, 1609.5, $1576.5\left(v_{\mathrm{C}=\mathrm{C}}, v_{\mathrm{C}=\mathrm{N}}\right), 1479.8\left(\delta_{\mathrm{CH} 2}\right), 1329.1\left(v_{\mathrm{C}-\mathrm{N}}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 1.48\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.71 (br s, $2 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), 2.02 (pentad, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.63\left(\mathrm{t}, 2 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), $2.91(\mathrm{t}$, $2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}$), 3.03 (br s, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), $3.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.26$ (s, 2H, CH2), 6.35 (br s, 1 H , furyl-H), 6.53 (br s, 2H, C $\mathrm{C}_{6}-\mathrm{H}$, furyl-H), $7.14\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{FH}}=8.5 \mathrm{~Hz}, J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathrm{Ph}-4 \mathrm{H}\right.$), 7.34 (br d, 1 H , $J_{\mathrm{FH}}=7.9 \mathrm{~Hz}, \mathrm{Ph}-2 \mathrm{H}$), 7.34 (br d, $1 \mathrm{H}, J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, \mathrm{Ph}-6 \mathrm{H}$), 7.52 (dd, $1 \mathrm{H}, J_{1}=7.7 \mathrm{~Hz}, J_{2}=7.7 \mathrm{~Hz}, \mathrm{Ph}-5 \mathrm{H}$); Anal. calcad. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{FN}_{6} \mathrm{OS}: \mathrm{C} 63.13, \mathrm{H} 6.32$, N 16.99 Found: C 63.05, H 6.21, N 16.88.

7-(3-fluorophenylamino)-5-methyl-2-(3-((5-(pyrrolidin-1-ylmethyl)furan-2-yl)methylthio)propyl)[1,2,4] triazolo[1,5-a]pyrimidine (12)

Yield: 65\%; m.p. 166-168 ${ }^{\circ} \mathrm{C}$; MS [$\left.\mathrm{MH}^{+}\right](\mathrm{m} / \mathrm{z})$: 481.1; IR (KBr) cm ${ }^{-1}: 3442.8\left(v_{\mathrm{NH}}\right), 2968.5$ ($\mathrm{v}_{\mathrm{CH} 3}$), $1610.2,1574.2\left(v_{\mathrm{C}=\mathrm{C}}, \mathrm{v}_{\mathrm{C}=\mathrm{N}}\right), 1478.2\left(\delta_{\mathrm{CH} 2}\right), 1328.9\left(v_{\mathrm{C}-\mathrm{N}}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.82\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$, 2.14 (pentad, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $2.64\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), $2.69\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.99$ (t, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}$), 3.71 (s, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), 6.11 (br s, 1 H , furyl-H), 6.16 (br s, 1H , furyl-H), 6.38 (s, 1H, C $6-H$), 7.03 (dd, $1 \mathrm{H}, J_{\mathrm{FH}}=8.1 \mathrm{~Hz}, J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, \mathrm{Ph}-4 \mathrm{H}$), 7.14 (br d, $1 \mathrm{H}, J_{\mathrm{FH}}=7.1 \mathrm{~Hz}, \mathrm{Ph}-2 \mathrm{H}$), 7.14 (br d, $1 \mathrm{H}, J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{Ph}-6 \mathrm{H}$), 7.45 (dd, $1 \mathrm{H}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, \mathrm{Ph}-5 \mathrm{H}$); Anal. calcad. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{FN}_{6} \mathrm{OS}: \mathrm{C} 62.48$, H 6.08, N 17.49 Found: C 62.38, H 5.99, N 17.41.

7-(3-fluorophenylamino)-5-methyl-2-(3-((5-((4-methylpiperazin-1-yl)methyl)furan-2-yl)methylthio)pro pyl)-[1,2,4]triazolo[1,5-a]pyrimidine (13)

Yield: 77\%; m.p. $179-180^{\circ} \mathrm{C}$; MS [$\left.\mathrm{MH}^{+}\right](\mathrm{m} / \mathrm{z})$: 510.2; IR (KBr$)_{\mathrm{cm}}{ }^{-1}: 3445.1\left(v_{\mathrm{NH}}\right), 2967.8\left(v_{\mathrm{CH} 3}\right)$, 1608.5, $1575.9\left(v_{\mathrm{C}=\mathrm{C}}, v_{\mathrm{C}=\mathrm{N}}\right), 1479.5\left(\delta_{\mathrm{CH} 2}\right), 1329.1\left(v_{\mathrm{C}-\mathrm{N}}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 2.02$ (pentad, 2 H , CH_{2}), $2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $2.57 \sim 2.62\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right.$), $2.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.89\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), 3.16 (br s, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), $3.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 3.76 (s, 2H, CH2), 6.22 (m, 2H, furyl- $2 \times \mathrm{H}$), 6.51 (s, $1 \mathrm{H}, \mathrm{C}_{6}-$ H), 7.12 (dd, $1 \mathrm{H}, J_{\mathrm{FH}}=8.6 \mathrm{~Hz}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{Ph}-4 \mathrm{H}$), 7.33 (br d, $1 \mathrm{H}, J_{\mathrm{FH}}=7.8 \mathrm{~Hz}, \mathrm{Ph}-2 \mathrm{H}$), 7.33 (br d, 1 H , $J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, \mathrm{Ph}-6 \mathrm{H}$), 7.51 (dd, $1 \mathrm{H}, J_{1}=7.5 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, \mathrm{Ph}-5 \mathrm{H}$); Anal. calcad. for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{FN}_{7} \mathrm{OS}: \mathrm{C}$ 61.27, H 6.33, N 19.24 Found: C 61.15, H 6.25, N 19.12.

7-(3-fluorophenylamino)-5-methyl-2-(3-((5-((dimethylamino)methyl)furan-2-yl)methylthio)propyl)-[1,2,4]triazolo[1,5-a]pyrimidine (14)

Yield: 52\%; m.p. $156-157^{\circ} \mathrm{C}$; MS [$\left.\mathrm{MH}^{+}\right](\mathrm{m} / \mathrm{z})$: 455.2; IR (KBr$)_{\mathrm{cm}}{ }^{-1}: 3443.5\left(v_{\mathrm{NH}}\right), 2964.5\left(v_{\mathrm{CH} 3}\right)$, 1608.2, $1575.4\left(v_{\mathrm{C}=\mathrm{C}}, \mathrm{v}_{\mathrm{C}=\mathrm{N}}\right), 1479.8\left(\delta_{\mathrm{CH} 2}\right), 1329.5\left(\mathrm{v}_{\mathrm{C}-\mathrm{N}}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.15$ (pentad, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.30\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.64\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.99\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $3.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.13\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}\right.$, furyl- $2 \times \mathrm{H}$), $6.40\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right),\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{FH}}=8.3\right.$ $\mathrm{Hz}, J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{Ph}-4 \mathrm{H}$), 7.15 (br d, 1H, $J_{\mathrm{FH}}=7.3 \mathrm{~Hz}, \mathrm{Ph}-2 \mathrm{H}$), 7.15 (br d, $1 \mathrm{H}, J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, \mathrm{Ph}-6 \mathrm{H}$), 7.45 (dd, $1 \mathrm{H}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}, \mathrm{Ph}-5 \mathrm{H}$); Anal. calcad. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{FN}_{6} \mathrm{OS}: \mathrm{C} 60.77$, H 5.99, N 18.49 Found: C 60.69, H 5.78, N 18.38.

7-(4-fluoro-3-(trifluoromethyl)phenylamino)-5-methyl-2-(3-((5-(morpholinomethyl)furan-2-yl)methyl Ithio)propyl)-[1,2,4]triazolo[1,5-a]pyrimidine (15)
 1622.3, 1581.2, $1505.3\left(v_{\mathrm{C}=\mathrm{C}}, \mathrm{v}_{\mathrm{C}=\mathrm{N}}\right)$, $1478.1\left(\delta_{\mathrm{CH} 2}\right), 1323.5\left(\mathrm{v}_{\mathrm{C}-\mathrm{N}}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 2.02$ (pentad, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.61\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.75\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.90(\mathrm{t}, 2 \mathrm{H}, J=7.1$ $\mathrm{Hz}, \mathrm{CH}_{2}$), 3.11 (br s, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), 3.65 (br s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.79 (br s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 6.26 (d, $1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}$, furyl-H), $6.33\left(\mathrm{~d}, 1 \mathrm{H}, J=2.9 \mathrm{~Hz}\right.$, furyl-H), $6.41\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 7.64\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{FH}}=10.0 \mathrm{~Hz}, J_{\mathrm{HH}}=9.5 \mathrm{~Hz}\right.$, Ph-5H), 7.83 (m, 2H, Ph-2, 6-2×H); Anal. calcad. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~F}_{4} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}$: C 55.31, H 5.00, N 14.88 Found: C 55.19, H 4.79, N 14.72.

7-(4-fluoro-3-(trifluoromethyl)phenylamino)-5-methyl-2-(3-((5-(piperidin-1-ylmethyl)furan-2-yl)meth ylthio)propyl)-[1,2,4]triazolo[1,5-a]pyrimidine (16)

Yield: 54\%; m.p. 182-183 ${ }^{\circ} \mathrm{C}$; MS [MH^{+}] (m / z): 563.1; IR (KBr$)^{\text {cm }}{ }^{-1}$: 3443.6 (v_{NH}), 2953.7 ($\mathrm{v}_{\mathrm{CH} 3}$), 1620.4, 1575.8, $1505.3\left(v_{\mathrm{C}=\mathrm{C}}, \mathrm{v}_{\mathrm{C}=\mathrm{N}}\right)$, $1476.7\left(\delta_{\mathrm{CH} 2}\right), 1323.0\left(\mathrm{v}_{\mathrm{C}-\mathrm{N}}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 1.44(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $1.66\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right.$), 2.02 (pentad, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.61\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), 2.89 (t, 2H, J = $7.1 \mathrm{~Hz}, \mathrm{CH}_{2}$), 3.00 (br s, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), 3.79 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $4.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.30(\mathrm{br} \mathrm{s}$, 1 H , furyl-H), $6.40\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 6.47$ (br s, 1 H , furyl-H), 7.63 (dd, $1 \mathrm{H}, J_{\mathrm{FH}}=9.9 \mathrm{~Hz}, J_{\mathrm{HH}}=9.0 \mathrm{~Hz}, \mathrm{Ph}-$ 5H), 7.79~7.83 (m, 2H, Ph-2, 6-2×H); Anal. calcad. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~F}_{4} \mathrm{~N}_{6} \mathrm{OS}$: C 57.64, H 5.37, N 14.94 Found: C 57.49, H 5.15, N 14.87.

7-(4-fluoro-3-(trifluoromethyl)phenylamino)-5-methyl-2-(3-((5-(pyrrolidin-1-ylmethyl)furan-2-yl) methylthio)propyl)-[1,2,4]triazolo[1,5-a]pyrimidine (17)

Yield: 54\%; m.p. $179-180^{\circ} \mathrm{C}$; MS [MH^{+}] (m / z): 549.1; IR (KBr$)^{\text {cm }}{ }^{-1}: 3445.1$ (v_{NH}), 2953.7 ($\mathrm{v}_{\text {Сн3 }}$), $1620.4,1505.3\left(v_{\mathrm{C}=\mathrm{C}}, \mathrm{v}_{\mathrm{C}=\mathrm{N}}\right), 1479.5\left(\delta_{\mathrm{CH} 2}\right), 1323.0\left(\mathrm{v}_{\mathrm{C}-\mathrm{N}}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.81\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$, 2.13 (pentad, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $2.62\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), $2.67\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.99$ (t, 2H, J = $7.3 \mathrm{~Hz}, \mathrm{CH}_{2}$), 3.71 (s, 2H, CH2), 3.72 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $6.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.1 \mathrm{~Hz}$, furyl-H), 6.14 (d, $1 \mathrm{H}, J=3.0 \mathrm{~Hz}$, furyl-H), $6.16\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 7.36\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{FH}}=9.2 \mathrm{~Hz}, J_{\mathrm{HH}}=9.0 \mathrm{~Hz}, \mathrm{Ph}-5 \mathrm{H}\right), 7.61$ (m, 2H, Ph-2, 6-2×H); Anal. calcad. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~F}_{4} \mathrm{~N}_{6} \mathrm{OS}: \mathrm{C} 56.92$, H 5.14, N 15.32 Found: C 56.85, H 5.21, N 15.18.

7-(4-fluoro-3-(trifluoromethyl)phenylamino)-5-methyl-2-(3-((5-((4-methylpiperazin-1-yl)methyl)furan-2-yl)methylthio)propyl)-[1,2,4]triazolo[1,5-a]pyrimidine (18)

Yield: 79\%; m.p. 179-180 ${ }^{\circ} \mathrm{C}$; MS [$\left.\mathrm{MH}^{+}\right](\mathrm{m} / \mathrm{z})$: 578.0; IR (KBr$)_{\mathrm{cm}}{ }^{-1}: 3444.7\left(v_{\mathrm{NH}}\right), 2965.7$ ($\mathrm{v}_{\mathrm{CH} 3}$), 1610.2, $1575.8\left(v_{\mathrm{C}=\mathrm{C}}, \mathrm{v}_{\mathrm{C}=\mathrm{N}}\right), 1478.7\left(\delta_{\mathrm{CH} 2}\right), 1329.5\left(\mathrm{v}_{\mathrm{C}-\mathrm{N}}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 2.02$ (pentad, 2 H , CH_{2}), $2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.59\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), $2.72\left(\mathrm{br} \mathrm{s}, 7 \mathrm{H}, \mathrm{CH}_{3}, 2 \times \mathrm{CH}_{2}\right), 2.89(\mathrm{t}, 2 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}, \mathrm{CH}_{2}$), 3.15 (br s, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), 3.55 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.76 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $6.21(\mathrm{~m}, 2 \mathrm{H}$, furyl $-2 \times \mathrm{H}$), $6.40\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 7.63$ (dd, $1 \mathrm{H}, J_{\mathrm{FH}}=9.9 \mathrm{~Hz}, J_{\mathrm{HH}}=9.2 \mathrm{~Hz}, \mathrm{Ph}-5 \mathrm{H}$), $7.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}-2,6-2 \times \mathrm{H}$); Anal. calcad. for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~F}_{4} \mathrm{~N}_{7} \mathrm{OS}: \mathrm{C} 56.14, \mathrm{H} 5.41$, N 16.97 Found: C 56.21, H 5.29, N 16.86.

7-(4-fluoro-3-(trifluoromethyl)phenylamino)-5-methyl-2-(3-((5-((diethylamino)methyl)furan-2-yl)meth yllthio)propyl)-[1,2,4]triazolo[1,5-a]pyrimidine (19)

Yield: 45\%; m.p. 172-174 ${ }^{\circ} \mathrm{C}$; MS [MH^{+}] (m / z): 551.2; IR (KBr$)_{\mathrm{cm}}{ }^{-1}: 3445.2\left(v_{\mathrm{NH}}\right), 2970.1\left(v_{\mathrm{CH} 3}\right)$, 1575.6, ($v_{\mathrm{C}=\mathrm{C}}, \mathrm{v}_{\mathrm{C}=\mathrm{N}}$), $1479.5\left(\delta_{\mathrm{CH} 2}\right), 1329.5\left(v_{\mathrm{C}-\mathrm{N}}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.11\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right)$, 2.15 (pentad, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $2.61\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 2.99\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.72(\mathrm{~s}$, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), $6.12\left(\mathrm{~m}, 2 \mathrm{H}\right.$, furyl-2H), $6.18\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 7.36\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{FH}}=9.0 \mathrm{~Hz}, J_{\mathrm{HH}}=9.0 \mathrm{~Hz}, \mathrm{Ph}-\right.$ 5 H), 7.64 (m, 2H, Ph-2, 6-2×H); Anal. calcad. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~F}_{4} \mathrm{~N}_{6} \mathrm{OS}: \mathrm{C} 56.71$, H 5.49, N 15.26 Found: C 56.57, H 5.39, N 15.12.

7-(4-fluoro-3-(trifluoromethyl)phenylamino)-5-methyl-2-(3-((5-((dimethylamino)methyl)furan-2-yl)methylthio)propyl)-[1,2,4]triazolo[1,5-a]pyrimidine (20)

Yield: 47\%; m.p. $166-168{ }^{\circ} \mathrm{C}$; MS [MH^{+}] (m / z): 523.1; IR (KBr$)^{\text {cm }}{ }^{-1}: 3443.9$ (v_{NH}), 2966.3 ($\mathrm{v}_{\mathrm{CH} 3}$), $1609.5,1575.3\left(v_{\mathrm{C}=\mathrm{C}}, \mathrm{v}_{\mathrm{C}=\mathrm{N}}\right), 1479.8\left(\delta_{\mathrm{CH} 2}\right), 1328.2\left(\mathrm{v}_{\mathrm{C}-\mathrm{N}}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.14$ (pentad, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.33\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 2.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.63\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.99\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $3.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.13$ (br s, 1 H , furyl-H), 6.17 (br s, 2 H , furyl-H, $\mathrm{C}_{6}-\mathrm{H}$), $7.36(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{\mathrm{FH}}=9.0 \mathrm{~Hz}, J_{\mathrm{HH}}=8.7 \mathrm{~Hz}, \mathrm{Ph}-5 \mathrm{H}\right), 7.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}-2,6-2 \times \mathrm{H}\right.$); Anal. calcad. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~F}_{4} \mathrm{~N}_{6} \mathrm{OS}: \mathrm{C}$ 55.16, H 5.01, N 16.08 Found: C 55.03, H 4.92, N 16.15.

Pharmacology

The anticancer activities of compounds 6-20 were evaluated in vitro on Bel-7402 (Human Liver Cancer cell lines) and HT-1080 (Human Fibro Sarcoma cell lines) by measuring cell viability by the MTT method, with cisplatin as the positive control. The cells were seeded in RPM I 1640 medium $(100 \mu \mathrm{~L})$ in a 96 -well plate at a concentration of 4000 cells per well. After culturing for 12 h at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$, cells were incubated with various concentrations of the samples for 24 h . MTT was added at a terminal concentration of $5 \mu \mathrm{~g} / \mathrm{mL}$ and incubated with the cells for 4 h . The formazan crystals were dissolved in DMSO ($100 \mu \mathrm{~L}$) in each well and the optical density was measured at 492 nm (for the absorbance of MTT formazan) and 630 nm (for the reference wavelength). The IC_{50} was calculated using the Bacus Laboratories Incorporated Slide Scanner (Bliss) software. Each compound was tested in triplicate at every concentration.

References and Notes

1. Ordentlich, P.; Yan, Y.; Zhou, S.; Heyman, R. A. Identification of the Antineoplastic Agent 6Mercaptopurine as an Activator of the Orphan Nuclear Hormone Receptor Nurr1. J. Bio. Chem. 2003, 278, 24791-24799.
2. Hoffmann, M.; Chrzanowska, M.; Hermann, T. Rychlewski, J. Modeling of purine derivatives transport across cell membrance based on their partition coefficient determination and quantum chemical calculations. J. Med. Chem. 2005, 48, 4482-4486.
3. Monaco III, E. A.; Beaman-Hall, C. M.; Mathur, A.; Vallano, M. L. Roscovitine, olomoucine, purvalanol: inducers of apoptosis in maturing cerebellar granule neurons. Biochem Pharm. 2004, 67, 1947-1964.
4. Knockaert, M.; Gray, N.; Damiens, E. Chang, Y. T.; Grellier, P.; Grant, K.; Fergusson, D.; Mottram, J.; Soete, M.; Dubremetz, J. F.; Roch, K. L.; Doerig, C.; Schultz, PG.; Meijer, L. Intracellular targets of cyclin-dependent kinase inhibitors: identification by affinity chromatography using immobilized inhibitors. Chem. Biol. 2000, 7, 411-422.
5. Bach, S.; Knockaert, M.; Reinhardt, J. Lozach, O.; Schmitt, S.; Baratte, B.; Koken, M.; Coburn, S. P.; Tang, L.; Jiang, T.; Liang, D. C.; Galons, H.; Dierick, J. F.; Pinna, L. A.; Meggio, F.; Totzke, F.; Schachtele, C.; Lerman, A. S.; Carnero, A.; Wan, Y. Q.; Gray, N.; Meijer, L. Roscovitine Targets, Protein Kinases and Pyridoxal Kinase. J. Bio. Chem, 2005, 280, 31208-31219.
6. Gaagjee, A.; Lin, X.; Kisliuk, R. L.; McGuire, J. J. Synthesis of N-\{4-[(2,4-diamino-5-methyl -4,7-dihydro-3H-pyrro[2,3-d]pyrimidin-6-yl)thio]benzoyl\}-L-glutamic acid and N-\{4-[(2-amino-4-oxo-5-methyl-4,7-dihydro-3H-pyrro[2,3-d]pyrimidin-6-yl)thio]benzoyl\}-L-glutamic acid as dual inhibitors of dihydro folate reductase and thymidylate synthase and as potential antitumor agents. J. Med. Chem. 2005, 48, 7215-7222.
7. Schenone, S.; Bruno, O.; Ranise, A. Bondavalli, F.; Brullo, C.; Fossa, P.; Mosti, L.; Menozzi, G.; Carraro, F.; Naldini, A.; Bernini, C.; Manetti, F.; Botta, M. New pyrazolo[3,4-d]pyrimidines endowed with A431: antiproliferative activity and inhibitory properties of Src phosphorylation. Bioorg. Med. Chem. Lett. 2004, 14, 2511-2517.
8. Markwalder, J. A.; Arnone, M. R.; Benfield, P. A.; Biosdir, M.; Boisclair, M.; Burton, C. R.; Chang, C. H.; Cox, S. S.; Czerniak, P. M.; Dean, C. L.; Doleniak, D.; Grafstrom, R.; Harrison, B. A.; Kaltenbach, R. F.; Nugiel, D. A.; Rossi, K. A.; Sherk, S. R.; Sisk, L. M.; Stouten, P.; Trainor, G. L.; Worland, P.; Seitz S. P. Synthesis and biological evaluation of 1-aryl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4-one inhibitors of cyclin-dependent kinases. J. Med. Chem. 2004, 47, 5894-5911.
9. Jaramillo, C.; Diego, J. E.; Hamdouchi, C.; Collins, E.; Keyser, H.; Sanchez-Martınez, C.; Prado, M.; Norman, B.; Brooks, H. B.; Watkins, S. A.; Spencer, C. D.; Dempsey, J. A.; Anderson, B. D.; Campbell, R. M.; Leggett, T.; Patel, B.; Schultz, R. M.; Espinosa, J.; Vieth, M.; Zhang F. M.; Timm, D. E. Aminoimidazo[1,2-a]pyridines as a new structural class of cyclin-dependent kinase inhibitors. Part 1: Design, synthesis, and biological evaluation. Bioorg. Med. Chem. Lett. 2004, 14, 6095-6099.
10. Havlicek, L.; Fuksova, K.; Krystof, V.; Orsag, M.; Vojtesek, B.; Strnad, M. 8-Azapurines as new inhibitors of cyclin-dependent kinases. Bioorg. Med. Chem. 2005, 13, 5399-5407.
11. Brana, M. F.; Cacho, M.; Garcıa, M. L.; Mayoral, E. P.; Lopez, B.; de Pascual-Teresa, B.; Ramos, A.; Acero, N.; Llinares, F.; Munoz-Mingarro, D.; Lozach, O.; Meijer, L. Pyrazolo[3,4c]pyridazines as Novel and Selective Inhibitors of Cyclin-Dependent Kinases. J. Med. Chem. 2005, 48, 6843-6854.
12. Zurbonsen, K.; Michel, A.; Bonnet, P. A.; Gannoun-Zaki, L.; Mathieu, M. N.; Chevillard, C. Apoptotic effects of imidazow1,2-axpyrazine derivatives in the human Dami cell line. Eur. J. Pharmacol. 1997, 320, 215-221.
13. Bower, J. F.; Cansfield, A.; Jordan, Allan.; Parratt, Martin.; Walmsley, L.; Willianson, D. [1,2,4]Triazolo[1,5-a]pyrimidines and their use in medicine. WO 2004108136. 2004 [Chem. Abstr. 2005, 142, P56337h].
14. Schmitt, M. R.; Kirsch, D. R.; Harris, J. E. Beyer, C. F.; Pees, K. J.; Carter, P.; Pfrengle, W.; Albert, G. Substituted triazolopyrimidines as anticancer agents. WO 0202563. 2002 [Chem. Abstr. 2002, 136, P96032n].
15. Zhang, N.; Ayral-Kaloustian, S.; Nguyen, T.; Afragola, J.; Hernandez, R.; Lucas, J. Synthesis and SAR of [1,2,4]Triazolo[1,5-a]pyrimidines, a Class of Anticancer Agents with a Unique Mechanism of Tubulin Inhibition. J. Med. Chem. 2007, 50, 319-327.
16. Schiemann, K.; Hoelzemann, G.; Rautenberg, W. Amine derivatives. WO 2005054246. 2005[Chem. Abstr. 2005, 143, P60006n].
17. Kazuhiro, T.; Hiroshi, S.; Eriko, T. New medical application of [1,2,4]Triazolo[1,5-a]pyrimidine derivative. JP 2005154335.2005 [Chem. Abstr. 2005, 143, P38379q].
18. Okabe, T.; Bhooshan, B.; Novinson, T. Hillyard, I. W.; Garner, G. E.; Robins, R. K. Dialkyl bicyclic heterocycles with a bridgehead nitrogen as purine analoges possing significant cardiac inotropic activity. J. Heterocycl. Chem. 1983, 20, 735-751.
19. Walter, R.; Joachim, V. Umsetzung von Aminoguanidin rnit Lactonen und Carbonsaureanhyd riden. Chem. Ber. 1968, 101, 2117-2123.

Sample Availability: Samples of the compounds mentioned above are available from authors
© 2007 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.

