ISSN 1420-3049
© 2007 by MDPI www.mdpi.org/molecules

Full Paper

Microwave Assisted Condensation Reactions of 2-Aryl Hydrazonopropanals with Nucleophilic Reagents and Dimethyl Acetylenedicarboxylate

Khadijah M. Al-Zaydi ${ }^{*}$ and Rita M. Borik
Department of Chemistry, Girl’s College of Education, Jeddah, P.O. 50918 Jeddah 21533, Kingdom of Saudi Arabia

* Author to whom correspondence should be addressed; E-mail: alzaydi_kh@yahoo.com

Received: 16 February 2007; in revised form: 26 May 2007 / Accepted: 1 June 2007 / Published: 24 August 2007

Abstract

The reaction of methyl ketones 1a-g with dimethylformamide dimethylacetal (DMFDMA) afforded the enaminones 2a-g, which were coupled with diazotized aromatic amines $\mathbf{3 a}, \mathbf{b}$ to give the corresponding aryl hydrazones $\mathbf{6 a - h}$. Condensation of compounds 6a-h with some aromatic heterocyclic amines afforded iminoarylhydrazones 9a-m. Enaminoazo compounds 12a,b could be obtained from condensation of $\mathbf{6 c}$ with secondary amines. The reaction of $\mathbf{6 e}, \mathbf{h}$ with benzotriazolylacetone yielded $\mathbf{1 4 a}, \mathbf{b}$. Also, the reaction of 6a,b,d-f,h with glycine and hippuric acid in acetic anhydride afforded pyridazinone derivatives 17a-f. Synthesis of pyridazine carboxylic acid derivatives 22a,b from the reaction of $\mathbf{6 b}$,e with dimethyl acetylenedicarboxylate (DMAD) in the presence of triphenylphosphine at room temperature is also reported. Most of these reactions were conducted under irradiation in a microwave oven in the absence of solvent in an attempt to improve the product yields and to reduce the reaction times.

Keywords: 2-Arylhydrazonopropanals, heterocyclic amines, active methylene, microwave irradiation.

Introduction

Over the last 100 years mankind has not paid much attention to the environmental impact of chemistry, but in the last decade this has changed radically and the need for "Green Chemistry" has become apparent. The utility of microwaves in heterocyclic synthesis is also receiving now considerable attention [1-4]. Enaminones has been recently extensively utilized as precursors for the synthesis of heteroaromatics [5-8]. We report herein on the synthesis of iminoarylhydrazonopropanone, azolopyrimidine and 3-oxaloalkanonitrile derivatives of potential interest as pharmaceuticals and photochromic dyes [9-13], starting from enaminones. It has been reported that methylalkyl ketones and methylaryl ketones condense readily with dimethylformamide dimethylacetal (DMFDMA) to yield enaminones, whose chemistry has recently attracted considerable interest [5,6,12-20]. The chemistry of 2-arylhydrazonopropanals has also received considerable interest in the last few years [21-25]. As part of an ongoing project in our laboratory aimed at exploring potential utility of microwave irradiation as a source of heat for producing polyfunctionally substituted heteroaromatics and because of our recent interest in making our synthetic approaches environmentally attractive, we have decided to investigate here the possibility of conducting our reactions in two ways:
(i) Classical conventional heating methods with solvents (Δ).
(ii) Microwave heating without solvent ($\mu \omega$).

The yield of products obtained with the microwave heating technique and the time taken to complete the reactions will be compared with those seen with conventional methods [8, 26].

Results and Discussion

The enaminones required for this investigation were first synthesized via condensation of methyl aryl 1a or heteroaryl ketones $\mathbf{1 b}$-g with DMFDMA in refluxing xylene. The desired compounds were obtained in low yield, consequently we have modified this synthetic approach by condensing the methyl ketones with slightly excess of DMFDMA in the absence of solvent [26] (Scheme 1). In this case the reaction products $\mathbf{2 b}-\mathbf{g}$ were obtained in almost quantitative yields yield on cooling in a much more economical synthesis.

Scheme 1

2	R	2	R
a	$\mathbf{C H}_{3}$	e	$o-\mathrm{OHC}_{6} \mathrm{H}_{4}$
b	2-furyl	\mathbf{f}	$p-\mathrm{OHC}_{6} \mathrm{H}_{4}$
c	2-pyrrolyl	g	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$
d	2-pyridyl		

Enaminones 2a-g coupled with diazotized methyl anthranilate 3a or diazotized anthranilonitrile 3b in the presence of ethanolic sodium acetate to yield the corresponding aryl hydrazone coupling products 6 a-h [17, 27] (Scheme 2).

Scheme 2

When N, N-dimethylamino-3-buten-2-one (2a) and 3-N,N-dimethylamino-1-(4-chloro phenyl)-2-propen-1-one ($2 \mathbf{g}$) were treated with excess diazotized anthranilonitrile $\mathbf{3 b}$ the bisazo compounds $\mathbf{7 a}$ and $\mathbf{7 b}$ was formed in a Japp-Klingmann type reaction which proceed via intermediate formation of 6a,b [28] (Scheme 3). The ${ }^{1} \mathrm{H}$-NMR of the resulting product $7 \mathbf{7 a}$ showed a single absorption signal at δ 15.50 ppm , corresponding to the NH proton resonance. The ${ }^{13} \mathrm{C}$ - NMR showed two absorption signals for the two CN groups at $\delta 117.05,117.46 \mathrm{ppm}$.

Scheme 3.

11

9	R	X	R^{1}	9	R	X	R^{1}
a	CH_{3}	$\mathrm{CO}_{2} \mathrm{CH}_{3}$	thiazol-2-yl	h	2-furyl	$\mathrm{CO}_{2} \mathrm{CH}_{3}$	benzoimidazol-2-yl
b	2-furyl	$\mathrm{CO}_{2} \mathrm{CH}_{3}$	thiazol-2-yl	i	2-pyrrolyl	$\mathrm{CO}_{2} \mathrm{CH}_{3}$	benzoimidazol-2-yl
c	2-pyrrolyl	CN	thiazol-2-yl	j	$\mathrm{C}_{6} \mathrm{H}_{4}$-Cl-p	$\mathrm{CO}_{2} \mathrm{CH}_{3}$	benzoimidazol-2-yl
d	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-\mathrm{p}$	$\mathrm{CO}_{2} \mathrm{CH}_{3}$	pyridine-2-yl	k	2-pyrrolyl	$\mathrm{CO}_{2} \mathrm{CH}_{3}$	benzothiazol-2-yl
e	CH_{3}	CN	pyridine-2-yl	1	CH_{3}	CN	benzothiazol-2-yl
f	2-pyrrolyl	CN	pyridine-2-yl	m	$\mathrm{C}_{6} \mathrm{H}_{4}$-Cl-p	CN	benzothiazol-2-yl
g	2-furyl	CN	pyridine-2-yl				

We also report herein on the reactivity of 6a-h towards a variety of nitrogen and carbon nucleophiles in the absence of solvent under irradiation $(\mu \omega)$ in a domestic microwave oven. The yields of products obtained under the microwave heating technique $\mu \omega$ and the time taken to complete the reactions are compared with those obtained by conventional heating (Δ) in Table 2 (see Experimental). Thus, $\mathbf{6 a - h}$ were heated with a variety of heterocyclic amines such as 2-aminothiazole (8a), 2-aminopyridine (8b), 2-aminobenzimidazole (8c) and 2-amino- benzothiazole (8d) yielding the corresponding condensation products $\mathbf{9 a - m}$. Several tautomeric forms (cf. 10, 11), seemed possible for the iminoaryl hydrazone condensation products $9 \mathbf{a}-\mathbf{m}$, whose structures were established based on spectral data. For example, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the $\mathbf{9 k}$ showed two singlets, the first at $\delta 6.89 \mathrm{ppm}$, corresponding to the resonance of the olefin CH proton and the second at $\delta 14.46 \mathrm{ppm}$ corresponding to the hydrazone NH proton. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ has also showed the disappearance of the absorption signal of the carbon atom corresponding to the formyl carbonyl group and the appearance of a signal at δ 165.27 ppm for the carbon atom of the $\mathrm{HC}=\mathrm{N}$ group. The IR of the $\mathbf{9 l}$ showed an absorption band at $3350 \mathrm{~cm}^{-1}$ of the NH group, as well as an absorption band at the rather low value of $1684 \mathrm{~cm}^{-1}$ for the carbonyl group. This indicates that there is a hydrogen bond between the hydrazone NH hydrogen and the oxygen of the carbonyl group. Treatment of $\mathbf{6 c}$ with secondary amines such as piperidine and morpholine afforded compounds 12a,b in good yield (Scheme 3).

Arylhydrazones $\mathbf{6 e}, \mathbf{h}$ reacted with benzotriazolylacetone (13) in boiling ethanol in the presence of traces of pyridine as a catalyst to give 14a,b by loss of a water molecule (Scheme 4). The structure of this product is proposed based on its elemental analysis and spectral data. The IR showed an absorption band at $1674 \mathrm{~cm}^{-1}$ and another at $1646 \mathrm{~cm}^{-1}$ for the carbonyl groups, as well as an absorption band at $3308 \mathrm{~cm}^{-1}$ for the NH group. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ showed two singlets at $\delta 1.99$ and 7.20 ppm, corresponding to the resonances of the CH_{3} protons and the olefin CH proton. Similar results were obtained when the reaction was performed under microwave irradiation.

Scheme 4.

It was noted that the reaction of 3-arylhydrazono-4-butanals 6a,e and 2-arylhydrazono-3-propanals $\mathbf{6 b}, \mathbf{d}, \mathbf{f}, \mathrm{h}$ with glycine or N -acetylglycine and with hippuric acid by boiling in acetic anhydride $\left(\mathrm{Ac}_{2} \mathrm{O}\right)$ gave similar compounds. The structural formulae 17a-g are proposed for the resulting products based on their elemental analysis and spectral data. Thus the ${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{1 7 a}$ showed a singlet at $\delta 2.23 \mathrm{ppm}$ corresponding to the protons of the CH_{3} attached to the amide group. Another singlet was
seen at $\delta 8.61 \mathrm{ppm}$, corresponding to the resonance of the pyridazine ring ($\mathrm{HC}-4$) proton. A third singlet seen at $\delta 10.21 \mathrm{ppm}$ was assigned to the amide group NH proton. The ${ }^{13} \mathrm{C}$-NMR showed a signal for the carbon atom of the methyl group attached to the amide group $\left(\mathrm{NHCO}_{\mathrm{C}} \mathrm{H}_{3}\right)$ at $\delta 24.83$ ppm and an absorption at $\delta 171.98 \mathrm{ppm}$ corresponding to the carbon atom of the amide group carbonyl $\left(\mathrm{NHCOCH}_{3}\right)$. The same result was obtained when the reaction was performed by means of microwave irradiation in a microwave oven for 5-15 minutes, in yields of $35 \%-50 \%$ (Scheme 5).

Scheme 5.

$\mathbf{1 7}$	R	X	Y
a	$\mathbf{C H}_{3}$	$\mathbf{C O}_{\mathbf{2}} \mathbf{C H}_{3}$	CH_{3}
b	2-furyl	$\mathbf{C O}_{\mathbf{2}} \mathbf{C H}_{3}$	CH_{3}
c	$\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{C l}-\boldsymbol{p}$	$\mathbf{C O}_{\mathbf{2}} \mathbf{C H}_{3}$	CH_{3}
d	$\mathbf{C H}_{3}$	$\mathbf{C N}$	CH_{3}
e	2-furyl	$\mathbf{C N}$	CH_{3}
f	$\mathbf{C}_{6} \mathbf{H}_{4}$-Cl-p	$\mathbf{C N}$	CH_{3}
g	CH_{3}	$\mathrm{CO}_{2} \mathrm{CH}_{3}$	Ph

It is proposed that when $\mathrm{Ac}_{2} \mathrm{O}$ is present the glycine is acetylated to N-acetylglycine and then this compound cyclizes to form 2-methyloxazol-5-one (15a) and the latter in turn condensed with the arylhydrazone derivatives $\mathbf{6 a , b , d} \mathbf{- f , h}$ to form the intermediate $\mathbf{1 6}$ which cannot be isolated, but then rearranges to form pyridazinone derivatives 17a-f. Similarly hippuric acid cyclized in the presence of $\mathrm{Ac}_{2} \mathrm{O}$ to give 5-phenyloxazol-5-one (15a) and then this compound condensed with arylhydrazone derivative $\mathbf{6 a}$ to gave pyridazinone derivative $\mathbf{1 7 g}$ [28,29].

Recently Elnagdi et al. [10, 30, 31] have described a synthesis of pyridazine-5,6-dicarbonates $\mathbf{2 2 a}, \mathbf{b}$ via reaction of $\mathbf{6 b}, \mathbf{e}$ with dimethyl acetylenedicarboxylate in the presence of diphenylphosphine. The exact mechanism has never been discussed. In our hands, a similar reaction took place affording dimethyl-1,6-dihydropyridazines-5,6-dicarboxylate. We believe that the initial step in this reaction is the addition of triphenylphosphine to the dimethyl acetylenedicarboxylate to yield 18, then this compound attacks the formyl carbonyl group yielding 19, which cyclizes to 20 and the latter is then converted into the final product via intermediate 21 (Scheme 6).

Scheme 6

a: $\mathrm{R}=2$-furyl, $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CO}_{2} \mathrm{CH}_{3}$-o b: $\mathrm{R}=\mathrm{CH}_{3}, \quad \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CN}-\mathrm{o}$

Experimental

General

All melting points were measured on a Gallenkamp Electrothermal melting point apparatus and are uncorrected. The IR absorption spectra (KBr disks) were measured on a Nicolet Magna 520FT IR Spectrophotometer. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectra were recorded in deuterated dimethylsulfoxide (DMSO- d_{6}) or deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ at 200 MHz on a Varian Gemini NMR spectrometer or a Bruker DPX 400 MHz spectrometer using tetramethylsilane (TMS) as an internal reference and results are expressed as δ values (ppm). Mass spectra were recorded on a Shimadzu GCMS-QP 1000 Ex mass spectrometer at 70 eV . Microwave irradiation was carried out using a commercial microwave oven (SGO 390W). Elemental analyses were carried out at the Microanalytical Center of Cairo University, Egypt.

General Procedure for the preparation of enaminones 2a-g

Method I (Δ): Dimethylformamide dimethylacetal (DMFDMA) (0.1 mol) was added to solution of methyl ketone (0.1 mol) in dry xylene (30 mL) or dry toluene (30 mL), and the reaction mixture was refluxed for 8 hours. Removal of the solvent under reduced pressure yielded the crude product, which was recrystallized from xylene.

Method II (Δ without solvent): A mixture of dimethylformamide dimethylacetal (DMFDMA, 0.1 mol) and the corresponding methyl ketone (0.1 mol) was refluxed for 9 hours and was allowed to cool. The solid product formed was collected and recrystallized from xylene.

Method III ($\mu \omega$): Dimethylformamide dimethylacetal (DMFDMA, 0.1 mol) and methyl ketone (0.1 mol) were placed in the microwave oven and irradiated at full power for 1-5 min., left to cool to room temperature and the solid formed was collected and recrystallized from xylene.

Yields and properties of the products are summarized in Table 1.

Table 1.

NO.	COMPOUND	M.P. ${ }^{\circ} \mathbf{C}$	REF.
2a	4-Dimethylamino-3-buten-2-one	-	15
2b	3-Dimethylamino-1-(2-furyl)propenone	92	15
2c	3-Dimethylamino-1-(2-pyrrolyl)propenone	94	15
2d	3-Dimethylamino-1-(2-pyridyl)propenone	135	15
2e	3-Dimethylamino-1-(2-hydroxyphenyl) propenone	123	-
2f	3-Dimethylamino-1-(4-hydroxyphenyl) propenone	-	-
2g	3-Dimethylamino-1-(4-chlorophenyl) propenone	88	-

Preparation of 2-arylhydrazono-3-oxo-3-substituted-propanals 6a-h [15]

A cold solution of aryldiazonium salt (10 mmol) was prepared by adding a solution of sodium nitrite (1 g in $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$) to a cold solution of aryl amine hydrochloride (10 mmol of aryl amine in 5 mL concentrated HCl) with stirring as described earlier [15]. The resulting solution of the aryldiazonium salt was then added to a cold solution of enaminone in EtOH (50 mL) containing sodium acetate (1 g in $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$). The mixture was stirred at room temperature for 1 h and the solid product thus formed was collected by filtration and crystallized from the appropriate solvent.

2-(2-methoxycarbonylphenylhydrazono)-3-oxo-butanal (6a). Orange crystals (from ethanol); yield 63%; m.p. $126{ }^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}$: 3568 (br, NH), 2954 (CH aldehyde), 1695 ($\mathrm{C}=\mathrm{O}$ ester), 1647 ($\mathrm{C}=\mathrm{O}$ aldehyde), 1600 ($\mathrm{C}=\mathrm{O}$ ketone); ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta=2.52,2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.02,4.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.20-$ 8.15 (m, 4H, Ar-H), 9.59, 10.19 (s, 1H, CHO), 15.57, 15.89 (s, 1H, NH); MS: ($\mathrm{M}^{+}+1$) 249; Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$ (248.224): C, 58.07; H, 4.67; N, 11.28; Found: C, 58.37; H, 4.71; N, 11.58.

3-(2-furyl)-2-(2-methoxycarbonylphenylhydrazono)-3-oxo-propanal (6b). Dark yellow crystals (from dioxane); yield 90%; m.p. $195{ }^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}: 3468$ (br, NH), 2837 (CH aldehyde), 1705 ($\mathrm{C}=\mathrm{O}$ ester), 1652 ($\mathrm{C}=\mathrm{O}$ aldehyde) and 1615 ($\mathrm{C}=\mathrm{O}$ ketone); ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=4.05$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $6.60(\mathrm{~m}, 1 \mathrm{H}$, furyl H-4), 7.21-7.74 (m, 4H, Ar-H), 7.95-8.12 (m, 2H, furyl H-3, H-5), 10.23 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$) and 15.66 (s, 1H, NH) ppm; MS: (M^{+}) 300; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5}$ (300.256): C, 60.00; H, 4.00; N, 9.33 ; Found: C, 59.99; H, 4.01; N, 9.43.

2-(2-methoxycarbonylphenylhydrazono)-3-oxo-3-(2-pyrrolyl)propanal (6c). Pale orange crystals (from dil. dioxane); yield 45%; m.p. $186^{\circ} \mathrm{C}$; $\mathrm{IR} v_{\max } \mathrm{cm}^{-1}: 3568$ (br, NH), 2837 (CH aldehyde), 1720 ($\mathrm{C}=\mathrm{O}$ ester), 1662 ($\mathrm{C}=\mathrm{O}$ aldehyde) and 1645 ($\mathrm{C}=\mathrm{O}$ ketone); MS: $\left(\mathrm{M}^{+}+1\right.$) 298; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$ (299.27): C, 60.20; H, 4.34; N, 14.05; Found: C, 60.31; H, 4.40; N, 14.12.

3-(4-Chlorophenyl)-2-(2-methoxycarbonylphenylhydrazono)-3-oxo-propanal (6d). Yellow crystals (from ethanol); yield 80%; m.p. $189{ }^{\circ} \mathrm{C}$; IR: $v_{\text {max }} \mathrm{cm}^{-1}$ (this compound shows a complex spectrum due to the to H-bond between O and NH): 3022 (CH aromatic), 1711 ($\mathrm{C}=\mathrm{O}$ ester), 1650 ($\mathrm{C}=\mathrm{O}$ aldehyde), $1638\left(\mathrm{C}=\mathrm{O}\right.$ ketone) and $1586(\mathrm{C}=\mathrm{N})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta=4.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.20-8.09(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 10.25$ (s, $1 \mathrm{H}, \mathrm{CHO}$) and 15.69 ($\mathrm{s}, 1 \mathrm{H}$, disappeared after $\mathrm{D}_{2} \mathrm{O}$ exchange, NH); ${ }^{13} \mathrm{C}-\mathrm{NMR}: \delta=52.90$ $\left(\mathrm{COOCH}_{3}\right), 116.19,116.40,118.98,128.36,133.33,138.75\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CO}_{2} \mathrm{M}-\mathrm{o}\right)$, 124.98, 131.59, 131.89, 134.74, $135.50\left(\underline{\mathrm{C}}_{6} \mathrm{H}_{4}-\mathrm{Cl}-\mathrm{p}\right), 143.54(\underline{\mathrm{C}}=\mathrm{N}-\mathrm{N}), 166.87\left(\underline{\mathrm{COOCH}_{3}}\right), 188.23(\underline{\mathrm{C}}=\mathrm{O})$ and 190.49 ($\underline{\mathrm{C} H O}$); MS: $\left(\mathrm{M}^{+}\right) 344$; Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl}$ (344.76): C, 59.23; H, 3.80; N, 8.13; Found: C, 59.33; H, 3.82; N, 8.15.

2-(2-Cyanophenylhydrazono)-3-oxo-butanal (6e). Orange crystals (from ethanol); yield 80\%; m.p. $130{ }^{\circ} \mathrm{C}$; IR: $v_{\max } \mathrm{cm}^{-1}: 3406$ (br, NH), 2221 (CN), 1693 ($\mathrm{C}=\mathrm{O}$ aldehyde) and 1670 ($\mathrm{C}=\mathrm{O}$ ketone); ${ }^{1} \mathrm{H}-$ NMR: $\delta=2.52,2.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.22-8.02(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.58,10.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO})$ and $14.4,15.4$ (s, 1H, NH); MS: (M ${ }^{+}$) 215; Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$ (215.2): C, 61.39; H, 4.21; N, 19.53; Found: C, 61.48; H, 4.30; N, 19.58.

3-(2-Furyl)-2-(2-cyanophenylhydrazono)-3-oxopropanal (6f). Orange yellowish crystals (from dioxane); yield 78%; m.p. $205^{\circ} \mathrm{C}$; IR $v_{\text {max }} \mathrm{cm}^{-1}$: 3543 (br, NH), 2221 (CN), 1651 (C=O aldehyde) and 1648 (C=O ketone); ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=6.76$ (m, 1H, furyl H-4), 7.34-7.52 (m, 4H, Ar-H), 7.56-8.10 (m, 2 H , furyl H-3, H-5), 10.02 (s, 1H, CHO) and 14.49 (s, 1H, NH); ${ }^{13} \mathrm{C}-\mathrm{NMR}: \delta=112.54,115.30$, $148.22,149.63$ (furoyl carbon), 116.09 (CN), 122.08, 125.49, 133.66, 133.14, $143.70\left(\underline{\mathrm{C}}_{6} \mathrm{H}_{4}-\mathrm{CN}-\mathrm{o}\right)$, $152(\mathrm{C}=\mathrm{N}-\mathrm{N}), 176.15(\underline{\mathrm{C}} \mathrm{HO})$ and $188.95(\underline{\mathrm{C}}=\mathrm{O})$; MS: (M^{+}) 267; Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$ (267.23): C, 62.92; H, 3.37; N, 15.73; Found: C, 62.99; H, 3.40; N, 15.81.

2-(2-Cyanophenylhydrazono)-3-oxo-3(2-pyrrolyl)propanal (6g). Pale brown crystals (from dioxane); yield 65%; m.p. $172{ }^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}: 3450$ (br, NH), 2216 (CN), 1680 ($\mathrm{C}=\mathrm{O}$ aldehyde) and 1648 (C=O ketone); ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta=6.37(\mathrm{~m}, 1 \mathrm{H}$, pyrrolyl H-4), 7.15-7.31 (m, 4H, Ar-H), 7.64-7.91 (m, 2H, pyrrolyl H-3, H-5), 9.85 (br s, 1H, NH), 10.23 (s, $1 \mathrm{H}, \mathrm{CHO}$) and 14.98 (s, 1H, NH); MS: (M^{+}) 266; Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$ (266.24): C, 63.16; H, 3.76; N, 21.05; Found: C, 63.23; H, 3.79; N, 21.07.

3-(4-Chlorophenyl)-2-(2-cyanophenylhydrazono)-3-oxo-propanal (6h). Brown crystals (from 1:1 ethanol dioxane); yield 88%; m.p. $225^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}: 3320(\mathrm{NH}), 3019$ (CH aromatic), 2221 (CN), 1675 (C=O aldehyde) and 1640 ($\mathrm{C}=\mathrm{O}$ ketone); MS: $\left(\mathrm{M}^{+}\right) 311$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Cl}$ (311.73): C, 61.65; H, 3.23; N, 13.48; Found: C, 61.70; H, 3.15; N, 13.55.

General procedure for the preparation of bisazo compounds 7a,b

A cold solution of aryldiazonium salt (10 mmol , a slight excess) was prepared by adding a solution of sodium nitrite (1 g in $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$) with stirring to a cold solution of arylamine hydrochloride (10 mmol of arylamine in 5 mL concentrated HCl) as described earlier. The resulting solution of the aryldiazonium salt was then added to a cold solution of enaminone in EtOH (50 mL) containing sodium acetate (1 g in $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$). The mixture was stirred at room temperature for 1 h and the solid product thus formed was collected by filtration and crystallized from the appropriate solvent.

3-[(2-cyanophenyl) diazo]-3-[(2-cyanophenyl)hydrazono]propan-2-one (7a). Brown crystals (from ethanol); yield 82%; m.p. $179{ }^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}: 3066$ (CH aromatic), 2935 (CH aliphatic), 2222 (CN), $1666(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta=2.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.20-7.81(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, and $15.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-$ NMR: $\delta=52.26\left(\mathrm{CH}_{3}\right), 117.05,117.46(2 \mathrm{C} \equiv \mathrm{N}), 100.67,108.74,117.96,118.86,125.05,127.74$, 133.39, 133.67, 134.10, 134.19, 134.35, $144.75\left(2 \underline{\mathrm{C}}_{6} \mathrm{H}_{4}-\mathrm{CN}-o\right)$, $151.75(\underline{\mathrm{C}}=\mathrm{N}-\mathrm{NH})$ and $197.41(\underline{\mathrm{C}}=\mathrm{O})$; MS: $\left(\mathrm{M}^{+}-1\right)$ 315; Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}$ (316.32): C, 64.55; H, 3.82; $\mathrm{N}, 26.57$; Found: C, 64.60; H, 3.75; N, 26.49.

1-(4-chlorophenyl)-2-[(2-cyanophenyl)diazo]-2-[(2-cyanophenyl)hydrazono]-ethan-1-one (7b). Dark brown crystals (from 1:1 ethanol/dioxane); yield 80%; m.p. $226^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}: 3069$ (CH aromatic), 2222 (CN), 1646 (C=O); ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=7.18-7.96(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$ and $15.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta$ = 101.38, 107.99, 117.17, 119.84, 125.17, 127.56, 133.18, 133.54, 133.57, 134.17, 134.34, 145.48
($2 \underline{\mathrm{C}}_{6} \mathrm{H}_{4}-\mathrm{CN}-\mathrm{o}$), 116.09, $116.36(2 \underline{\mathrm{C}} \equiv \mathrm{N})$, $151.74(\underline{\mathrm{C}}=\mathrm{N}-\mathrm{NH})$ and $190.07(\underline{\mathrm{C}}=\mathrm{O})$; MS: $\left(\mathrm{M}^{+}-1\right)$ 411; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{~N}_{6} \mathrm{OCl}$ (412.84): C, 64.01; H, 3.17; N, 20.36; Found: C, 64.15; H, 3.20; N, 20.39. Reaction of 2-Arylhydrazones with heterocyclic amines:

Method $I(\Delta)$: A mixture of compounds $\mathbf{6 a - h}(0.1 \mathrm{~mol})$ and amine $(0.1 \mathrm{~mol})$ was refluxed in ethanol $(30 \mathrm{~mL})$ for 2 hours, then left to cool to room temperature and the solid was collected and crystallized from the appropriate solvent.

Method II $(\mu \omega)$: A mixture of compounds 6a-h (0.1 mol) and amine (0.1 mol) and a few drops of ethanol was placed in the microwave oven and irradiated at 390 w for 5 min ., then left to cool to room temperature and the solid was collected and crystallized from the appropriate solvent.

Methyl 2-\{ N^{\prime}-[2-Oxo-1-(thiazol-2-yliminomethyl)-propylidene]hydrazino\}benzoate (9a). Brown crystals (from methanol); yield 80%; m.p. $145{ }^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}: 3450$ (br, NH), 3087 (CH aromatic), 2954 (CH aliphatic), 1706 ($\mathrm{C}=\mathrm{O}$ ester), 1660 ($\mathrm{C}=\mathrm{O}$ ketone) and 1571 ($\mathrm{C}=\mathrm{N}$); MS: (M^{+}) 330; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ (330.37C, 54.54; H, 4.27; N, 16.96; Found: C, 54.56; H, 4.20; N, 16.90.

Methyl 2-\{N'-[2-Furan-2-yl-2-oxo-1-(thiazol-2-yliminomethyl)ethylidene]hydrazino\}benzoate (9b). Light brown crystals (from methanol); m.p. $162{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta=3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 6.79(\mathrm{~m}, 1 \mathrm{H}$, furyl H-4), 7.24 (d, 1H, furyl H-3), 7.3, 7.52 (d, 2H, thiazole H-4, H-5), 7.57-8.06 (m, 4H, Ar-H), 7.8 (s, 1H, CH olefinic), 8.13 (d, 1H, furyl H-5) and 15.37 (s, 1H, NH); MS: (${ }^{+}$) 382; Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ (382.40): C, 56.54; H, 3.69; N, 14.65; Found: C, 56.57; H, 3.70; N, 14.66.

2-\{N'-[2-Oxo-2-(1H-pyrrol-2-yl)-1-(thiazol-2-yliminomethyl)ethylidene]hydrazino\}benzonitrile (9c). Brown crystals (from ethanol); m.p. $201^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}: 3490$ (br, NH), 3066 (CH aromatic), 2223 (CN), $1665(\mathrm{C}=\mathrm{O})$ and $1551(\mathrm{C}=\mathrm{N})$; MS: $\left(\mathrm{M}^{+}\right)$348: Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{OS}$ (348.39): C, 58.61; H, 3.47; N, 24.12; Found: C, 58.67; H, 3.50; N, 24.15.

Methyl 2-\{ N^{\prime}-[2-(4-chlorophenyl)-2-oxo-1-(pyridin-2-yliminomethyl)ethylidene]hydrazino\}benzoate (9d). Orange crystals (from 2:1 ethanol/dioxane); m.p. $255{ }^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}$: 3320 (NH), 3007 (CH aromatic), 1645 ($\mathrm{C}=\mathrm{O}$ ketone), and $1588(\mathrm{C}=\mathrm{N}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta=3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.25,7.47(\mathrm{~m}, 2 \mathrm{H}$, pyridyl H-4, H-5), 7.62-8.03 (m, 8H, Ar-H), 8.63 (d, 1H, pyridyl H-3), 8.58 (d, 1H, pyridyl H-6), 9.66 (s, 1H, CH olefinic) and 15.73 (s, 1H, NH); MS: $\left(\mathrm{M}^{+}\right) 420$; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}$ (420.86): C, 62.79, H, 4.07; N, 13.31; Found: C, 62.70; H, 4.20; N, 13.39.

2-\{N'-[2-Oxo-1-(pyridin-2-yliminomethyl)propylidene]hydrazino\}benzonitrile (9e). Dark orange crystals (from ethanol); m.p. $198{ }^{\circ} \mathrm{C}$; IR: $v_{\text {max }} \mathrm{cm}^{-1}: 3317$ (NH), 3065 (CH aromatic), 2920 (CH aliphatic), 2222 (CN), 1664 ($\mathrm{C}=\mathrm{O}$ ketone) and 1553 ($\mathrm{C}=\mathrm{N}$); MS: (M^{+}) 291; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}$ (291.31): C, 65.97; H, 4.50; N, 24.04; Found: C, 65.87; H, 4.59; N, 24.35.

2-\{ N^{\prime}-[2-Oxo-1-(pyridin-2-yliminomethyl)-2-(1H-pyrrol-2-yl)-ethylidene]hydrazino\}benzonitrile (9f). Dark orange crystals (from ethanol); m.p. $232{ }^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}: 3267$ (2 NH), 3050 (CH aromatic),

2222 (CN), $1618(\mathrm{C}=\mathrm{O})$ and $1539(\mathrm{C}=\mathrm{N})$; MS: $\left(\mathrm{M}^{+}\right)$342; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}$ (342.36): C, 66.66; H, 4.12; N, 24.55; Found: C, 66.56; H, 4.20; N, 24.59.

2-\{ N^{\prime}-[2-Furan-2-yl-2-oxo-1-(pyridin-2-yliminomethyl)ethylidene]hydrazino\}benzonitrile (9g). Brown crystals (from ethanol); m.p. $259^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}: 3500$ (br, NH), 3105 (CH aromatic), 2220 (CN), $1631(\mathrm{C}=\mathrm{O})$ and $1549(\mathrm{C}=\mathrm{N})$; MS: $\left(\mathrm{M}^{+}\right) 343$; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{2}$ (343.35): C, 66.47; H , 3.82; N, 20.40; Found: C, 66.50; H, 3.89; N, 20.35.

Methyl 2-(N'-\{1-[(1H-Benzoimidazol-2-ylimino)-methyl]-2-furan-2-yl-2-oxo-ethylidene\}hydrazino) benzoate (9h). Brown crystals (from 2:1 ethanol/dioxane); m.p. $240^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=4.0(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 6.83 (dd, 1 H , furyl H-4), 7.22-7.25 (m, 4H, imidazole-H), 7.36 (m, 1H, furyl H-3), 7.63-7.99 (m, 4H, Ar-H), 8.08 (d, 1H, furyl H-5), 9.47 (s, 1H, CH olefinic), 12.11 (s, 1H, NH imidazole) and 15.85 (s, 1H, NH hydrazone) ppm; MS: (M ${ }^{+}$) 415; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4}$ (415.41): C, 63.61; H , 4.12; N, 16.86; Found: C, 63.67; H, 4.22; N, 16.90.

Methyl 2-(N^{\prime}-\{1-[(1H-Benzoimidazol-2-ylimino)-methyl]-2-oxo-2-(1H-pyrrol-2-yl)-ethylidene Jhydrazino)benzoate (9i). Dark yellow crystals (from 2:1 ethanol/dioxane); m.p. $281^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}$ (shows complex spectra due to H-bond between O and NH): 3480 (NH pyrrolyl), 3383 (NH imidazole), 3081(CH aromatic), 1718 ($\mathrm{C}=\mathrm{O}$ ester), 1656 ($\mathrm{C}=\mathrm{O}$ ketone) and 1571 ($\mathrm{C}=\mathrm{N}$); ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=3.96$ (s, 3H, OCH_{3}), $6.54(\mathrm{~m}, 1 \mathrm{H}$, pyrrolyl H-4), 6.95-7.02 (m, 2H, pyrrolyl H-3, H-5), 7.21-7.32 (m, 4H, imidazole H), 7.54-7.97 (m, 4H, Ar-H), 9.22 (s, 1H, CH olefinic), 11.43 (s, 1H, NH pyrrolyl), 11.65 (s, 1H, NH imidazole) and 14.25 (s, 1 H , NH hydrazone) ppm; MS: (M^{+}) 414; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{3}$ (414.43): C, 63.76; H, 4.38; N, 20.28; Found: C, 63.79; H, 4.40; N, 20.30.

Methyl 2-(N'\{1-[(1H-Benzoimidazol-2-ylimino)-methyl]-2-(4-chlorophenyl)-2-oxo-2-ethylidene]hydrazino \} benzoate ($\mathbf{9 j}$). Orange crystals (from 2:1 ethanol/dioxane); m.p. $257{ }^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}$: (shows complex spectra due to H -bond between O and NH) 3354 (NH imidazole), 1690 ($\mathrm{C}=\mathrm{O}$ ester), 1640 (C=O ketone) and $1586(\mathrm{C}=\mathrm{N})$; MS: ($\mathrm{M}^{+}-18$) 441; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Cl}$ (459.90): C, 62.68; H, 3.95; N, 15.23; Found: C, 62.58; H, 3.90; N, 15.33.

Methyl 2-\{N'-[1-(Benzothiazol-2-yliminomethyl)-2-oxo-2-(1H-pyrrol-2-yl)-ethylidene]-hydrazino\}benzoate (9k). Brown crystals (from methanol); m.p. $189^{\circ} \mathrm{C}$; $\mathrm{IR} v_{\max } \mathrm{cm}^{-1}: 3492,3224$ (2NH), 3023 (CH aromatic), 1720 ($\mathrm{C}=\mathrm{O}$ ester), 1664 ($\mathrm{C}=\mathrm{O}$ ketone) and $1575(\mathrm{C}=\mathrm{N}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=3.96(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 6.41 (m, 1H, pyrrolyl H-4), 6.75 (d, 2H, pyrrolyl H-3), 6.89 (s, 1H, CH olefinic), $6.95(\mathrm{~d}, 1 \mathrm{H}$, pyrrolyl H-5), 7.22, 7.36 (d, 2H, benzothiazole H-4, H-7), 7.38-7.44 (m, 2H, benzothiazole H-5, H-6), 7.53 (s, 1H, NH pyrrolyl), 7.62-7.69 (m, 2H, Ar H-4, H-5), 7.89, 7.91 (d, 2H, Ar H-3, H-6), and 14.46 (s, 1H, NH hydrazone) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}: \delta=52.46\left(\mathrm{OCH}_{3}\right), 110.33,121.24,126.57,131.30$ (pyrrolyl carbon), 113.21, 114.03, 116.90, 119.54, 134.21, 136.84 ($\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CO}_{2} \mathrm{Me}-o$), 121.58, 123.18, 124.77, $134.32,137.45\left(\underline{C_{6}} \mathrm{H}_{4} \mathrm{NS}\right), 140.50(\underline{\mathrm{C}}=\mathrm{N}-\mathrm{N}), 144.82(\mathrm{~N}-\underline{\mathrm{C}}-\mathrm{S}), 165.27(\mathrm{HC}=\mathrm{N}), 167.31\left(\mathrm{COOCH}_{3}\right)$ and $173.42(\underline{C}=\mathrm{O})$ ppm; MS: $\left(\mathrm{M}^{+}\right)$431; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$ (431.48): C, 61.24; H, 3.97; N , 16.23; Found: C, 61.34; H, 3.87; N, 16.40.

2-\{ N^{\prime}-[1-(Benzothiazol-2-yliminomethyl)-2-oxo-propylidene]-hydrazino\}-benzonitrile (91). Brown crystals (from 2:1 ethanol/dioxane); m.p. $223^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}: 3350$ (NH), 3061 (CH aromatic), 2921 (CH aliphatic), $2216(\mathrm{C} \equiv \mathrm{N}), 1684(\mathrm{C}=\mathrm{O})$ and $1560(\mathrm{C}=\mathrm{N}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.24-7.99$ (m, 8H, Ar-H), 9.50 (s, 1H, CH olefinic) and $15.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm},{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta=25.10\left(\mathrm{C}_{3} \mathrm{CO}\right)$, 101.32, 115.80, 121.92, 134.23, 134.38, $145.82\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CN}-\mathrm{o}\right.$), 116.32 ($\mathrm{C} \equiv \mathrm{N}$), 123.56, 125.45, 125.48, 126.81, $133.12\left(\underline{\mathrm{C}_{6}} \mathrm{H}_{4} \mathrm{NS}\right), 151.55(\underline{\mathrm{C}}=\mathrm{N}-\mathrm{N}), 153.50(\mathrm{~N}-\underline{\mathrm{C}}-\mathrm{S}), 168.40(\mathrm{HC}=\mathrm{N})$ and 196.56 ($\left.\underline{\mathrm{C}}=\mathrm{O}\right) \mathrm{ppm} ;$ MS: $\left(\mathrm{M}^{+}\right) 347$; Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{OS}$ (347.40): C, 62.23; H, 3.77; N, 20.16; Found: C, 62.40; H, 3.97; N, 20.20.

2-\{N'-[1-(Benzothiazol-2-yliminomethyl)-2-(4-chlorophenyl)-2-oxo-ethylidene]-hydrazino\}-benzonitrile (9 m). Brown crystals (from 2:1 ethanol/dioxane); m.p. $259^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}: 3600$ (br, NH), $3070\left(\mathrm{CH}\right.$ aromatic), $2219(\mathrm{C} \equiv \mathrm{N}), 1650(\mathrm{C}=\mathrm{O})$ and $1559(\mathrm{C}=\mathrm{N}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=6.97-8.35(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}-$ H), 8.13 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$ olefinic) and $15.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm}$; MS: $\left(\mathrm{M}^{+}\right) 443$; Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{OClS}$ (443.92): C, 62.23; H, 3.18; N, 15.78; Found: C, 62.40 ; H, 3.28; N, 15.68.

Methyl 2-[2-piperidin-1-yl-1-(1H-pyrrol-2-carbonyl)-vinylazoethylidene] benzoate (12a). Brown crystals (from ethanol); m.p. $200^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}$: 3158 (NH pyrrolyl), 3009 (CH aromatic), 2932 (CH aliphatic), 1672 ($\mathrm{C}=\mathrm{O}$ ester), 1573 ($\mathrm{C}=\mathrm{O}$ ketone) and $1495(\mathrm{~N}=\mathrm{N})$) ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=1.43-2.75(\mathrm{~m}, 10 \mathrm{H}$, piperidin H), 5.57 (s, 1H, NH pyrrolyl), 6.50 (m, 1H, pyrrolyl H-4), 6.82 (d, 1H, pyrrolyl H-3), 6.956.99 (m, 1H, Ar H-4), 7.21 (d, 1H, pyrrolyl H-5), 7.49-7.53 (m, 1H, Ar H-5), 7.86, 7.98 (d, 2H, Ar-H3, H-6) and 8.12 (s, 1 H , CH olefinic) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}: ~ \delta=24.54,26.18,48.43$ (piperidinyl carbons), $52.37\left(\mathrm{COOCH}_{3}\right), 109.35,112.88,114.03$ (pyrrolyl carbons), 116.13, 120.77, 123.43, 131.34, 134.32, $135.38\left(\underline{C}_{6} \mathrm{H}_{4}-\mathrm{CO}_{2} \mathrm{M}-\mathrm{o}\right), 139.45(\mathrm{HC}=\mathrm{C}-\mathrm{N}), 145.59(\mathrm{HC}=\underline{\mathrm{C}}-\mathrm{N}), 167.42\left(\mathrm{COOCH}_{3}\right)$ and $174.40(\underline{\mathrm{C}}=\mathrm{O})$ ppm; MS: $\left(\mathrm{M}^{+}\right)$366; Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}$ (366.42): C, 65.56; H, 6.05; N, 15.29; Found: C, 65.69; H, 6.25; N, 15.15.

Methyl 2-[2-morpholin-4-yl-1-(1H-pyrrol-2-carbonyl)-vinylazo] benzoate (12b). Brown crystals (from ethanol); m.p. $190{ }^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}: 3115$ (NH pyrrolyl), 3018 (CH aromatic), 2952 (CH aliphatic), 1697 ($\mathrm{C}=\mathrm{O}$ ester), 1660 ($\mathrm{C}=\mathrm{O}$ ketone) and $1495\left(\mathrm{~N}=\mathrm{N}\right.$); ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta=2.47-2.79$ ($\mathrm{m}, 4 \mathrm{H}$, morpholinyl H), 3.58, 3.93 (d, 4H, morpholinyl H), 5.93 (s, 1H, NH pyrrolyl), 6.60 (m, 1H, pyrrolyl H-4), 6.87 (d, 1 H , pyrrolyl $\mathrm{H}-3$), 7.20 (d, 1H, pyrrolyl H-5), 7.55-7.97 (m, 4H, Ar-H) and 8.10 (s, 1H, CH olefinic) ppm; MS: $\left(\mathrm{M}^{+}\right)$368; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$ (368.40): C, 61.95; H, 5.47; N, 15.21; Found: C, 61.92; H, 5.50; N, 15.30.

General procedure for the reaction of 2-arylhydrazono derivatives with active methylene compounds

With benzotriazolacetone

Method $I(\Delta)$: A solution of compounds $\mathbf{6 e}, \mathbf{h}(0.1 \mathrm{~mol})$ in ethanol (30 mL) was treated with benzotriazolylacetone (0.1 mol) in the presence of a few drops of piperidine and refluxed for 3 hours. The precipitated material was isolated by filtration and crystallized from the appropriate solvent

Method II $(\mu \omega)$: Compounds $6 \mathrm{e}, \mathrm{h}(0.1 \mathrm{~mol})$ and benzotriazolylacetone (0.1 mol) in the presence of a few drops of piperidine was placed in the microwave oven and irradiated at 390 w for 2-15 min., then left to cool to room temperature and the solid was collected and crystallized from the appropriate solvent.

5-Benzotriazolyl-3-(2-cyanophenylhydrazono)-4-hepten-2,6-dione (14a). Brown crystals (from dioxane); m.p. $235{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta=2.20,2.30\left(\mathrm{~s}, 3 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 6.64-7.98$ (m, $9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}+\mathrm{CH}$ olefinic) and 14.12 (s, $1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}: ~ \delta=19.77,19.80\left(2 \mathrm{CH}_{3}\right), 112.11(\mathrm{H} \underline{\mathrm{C}}), 116.50(\underline{\mathrm{CN}}), 110.11$, 115.82, 119.20, 132.81, 133.65, $150.22\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}-o\right.$), 128.59, 129.89, 130.23, 131.79 (benzotriazolyl carbons), 144.70 ($\mathrm{N}-\underline{\mathrm{C}}-\mathrm{CO}$), $155.39(\underline{\mathrm{C}}=\mathrm{N}-\mathrm{N})$ and 196.55, 199.75 ($2 \underline{\mathrm{C}}=\mathrm{O}$) ppm; MS: (M^{+}) 372; Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2}$ (372.39): C, 64.51; H, 4.33; N, 22.57; Found: C, 64.65; H, 4.23; $\mathrm{N}, 22.59$.

4-Benzotriazolyl-1-(4-chlorophenyl)-2-(2-cyanophenylhydrazono)-3-hexaen-1,5-dione (14b). Green crystals (from ethanol); m.p. $259^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}: 3400(\mathrm{NH}), 3068(\mathrm{CH}$ aromatic), $2320(\mathrm{C} \equiv \mathrm{N}), 1674$ ($\mathrm{C}=\mathrm{O}$) and 1646 ($\mathrm{C}=\mathrm{O}$ ketone); ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta=1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ olefinic), 7.61-8.11 (m, 12H, Ar-H) and 13.89 (s, 1H, NH) ppm; MS: (M^{+}) 468; Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Cl}$ (468.91): C, 64.04; H, 3.65; N, 17.92; Found: C, 64.45; H, 3.59; N, 17.99.

With glycine or N-acetylglycine or hippuric acid

Method I (Δ): Each of compounds $\mathbf{6 a , b , d , e , f , h}(0.1 \mathrm{~mol})$ and glycine or N-acetylglycine or hippuric acid (0.1 mol) was refluxed in acetic anhydride (20 mL) for 1 hour, then left to cool at room temperature and poured into ice-cold water. The solid product so formed was collected by filtration and crystallized from the appropriate solvent.

Method II $(\mu \omega)$: Each of compounds $\mathbf{6 a , b , d , e , f , h}(0.1 \mathrm{~mol})$ and glycine or N-acetylglycine or hippuric acid (0.1 mol) and drops from acetic anhydride (20 mL) was placed in the microwave oven and irradiated at 390 W for 5-15 min., then left to cool to room temperature and the solid was collected and crystallized from the appropriate solvent.

4-Acetylamino-6-acetyl-2-(2-methoxycarbonylphenyl)-2-hydropyridazin-3-one (17a). Brown crystals (from ethanol); m.p. $238{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta=2.23,2.43\left(\mathrm{~s}, 3 \mathrm{H}, 2 \mathrm{CH}_{3} \mathrm{CO}\right.$), $3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.66-8.01$ (m, $4 \mathrm{H}, \operatorname{Ar}-\mathrm{H}$), $8.61\left(\mathrm{~s}, 1 \mathrm{H}\right.$, pyridazinyl $\mathrm{H}-5$) and $10.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta=24.83$ $\left(\mathrm{NHCOCH}_{3}\right), 25.11\left(\mathrm{CH}_{3} \mathrm{CO}\right), 52.98\left(\mathrm{COOCH}_{3}\right), 108.76,136.98,143.87$ (pyridazine ring), 127.78, 128.99, 130.17, 130.90, 134.02, $140.89\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CO}_{2} \mathrm{Me}-o\right)$, 156.25 ($\mathrm{C}=\mathrm{O}$ ring), $165.54\left(\mathrm{COOCH}_{3}\right)$, $171.98\left(\mathrm{NHCOCH}_{3}\right)$ and $195.66\left(\mathrm{CH}_{3} \mathrm{CO}\right)$ ppm; MS: $\left(\mathrm{M}^{+}\right)$329; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5}$ (329.32): C, 58.36; H, 4.59; N, 12.76; Found: C, 58.40; H, 4.55; N, 12.86.

4-Acetylamino-6-(2-furylcarbonyl)-2-(2-methoxycarbonylphenyl)-2-hydropyridazin-3-one (17b). Dark brown crystals (from ethanol); m.p. $214{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta=2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right.$), 3.66 (s, 3H, OCH_{3}), 6.73 (m, 1H, furyl H-4), 7.51 (d, 1H, furyl H-3), 7.68-7.89 (m, 4H, Ar H), 8.02 (d, 1H, furyl H-5), 8.69
(s, 1 H , pyridazinyl $\mathrm{H}-5$) and 10.26 (s, $1 \mathrm{H}, \mathrm{NH}$) ppm; MS: $\left(\mathrm{M}^{+}\right)$381; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{6}$ (381.35): C, 59.84; H, 3.96; N, 16.08; Found: C, 59.79; H, 3.99; N, 16.25.

4-Acetylamino-6-(4-chlorophenylcarbonyl)-2-(2-methoxycarbonylphenyl)-2-hydropyridazin-3-one (17c). Light yellow crystals (from ethanol); m.p. $246{ }^{\circ} \mathrm{C}$; $\mathrm{IR} v_{\max } \mathrm{cm}^{-1}: 3285(\mathrm{NH}), 1713$ ($\mathrm{C}=\mathrm{O}$ ester and $\mathrm{C}=\mathrm{O}$ ketone) and 1644 ($\mathrm{C}=\mathrm{O}$ amide and $\mathrm{C}=\mathrm{O}$ pyidazine ring); ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right)$, 3.85 (s, 3H, OCH_{3}), 7.53-8.03 (m, 8H, Ar-H), $8.70(\mathrm{~s}, 1 \mathrm{H}$, pyridazinyl H-5) and $10.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$ ppm; MS: (M ${ }^{+}$) 425; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Cl}$ (425.83): C, 59.23; H, 3.79; N, 9.87; Found: C, 59.35; H, 3.70; N, 9.96.

4-Acetylamino-6-acethyl-2-(2-cyanophenyl)-2-hydropyridazin-3-one (17d). Dark brown crystals (from ethanol); m.p. $244{ }^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}: 3323(\mathrm{NH}), 3107(\mathrm{CH}$ aromatic), $2900(\mathrm{CH}$ aliphatic), 2234 $(\mathrm{C} \equiv \mathrm{N}), 1702$ ($\mathrm{C}=\mathrm{O}$ ketone), 1656 ($\mathrm{C}=\mathrm{O}$ amide) and 1608 ($\mathrm{C}=\mathrm{O}$ pyridazine ring); ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=2.26$, 2.49 (s, 3H, 2CH3CO), 7.73-8.15 (m, 4H, Ar-H), 8.64 (s, 1H, pyridazinyl H-5) and 10.33 (s, 1H, disappeared after $\mathrm{D}_{2} \mathrm{O}$ exchange, NH) ppm; MS: $\left(\mathrm{M}^{+}\right)$296; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$ (296.29): C, 60.81; H, 4.08; N, 18.91; Found: C, 60.91; H, 4.25; N, 18.75.

4-Acetylamino-2-(2-cyanophenyl)-6-(2-furyl carbonyl)-2-hy dropyridazin-3-one (17e). Brown crystals (from ethanol); m.p. $242^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}: 3295(\mathrm{NH}), 3037(\mathrm{CH}$ aromatic), $2236(\mathrm{C} \equiv \mathrm{N}), 1714(\mathrm{C}=\mathrm{O}$ ketone), 1649 ($\mathrm{C}=\mathrm{O}$ amide) and $1620\left(\mathrm{C}=\mathrm{O}\right.$ pyridazine ring); ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.76$ (m, 1H, furyl H-4), 7.64, 8.13 (d, 2H, furyl H-3, H-5), 7.74-8.05 (m, 4H, Ar-H), 8.70 (s, 1H pyridazinyl H-5) and 10.41 (s, $1 \mathrm{H}, \mathrm{NH}$) ppm; MS: (M^{+}) 348; Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4}$ (348.32): C, 62.07; H, 3.47; N, 16.08; Found: C, 62.25; H, 3.40; N, 16.32.

4-Acetylamino-6-(4-chlorophenylcarbonyl)-2-(2-cyanophenyl)-2-hydropyridazin-3-one (17f). Brown crystals (from 1:1 ethanol/dioxane); m.p. $252{ }^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}: 3225(\mathrm{NH}), 3050(\mathrm{CH}$ aromatic), 2220 (CN), 1718 ($\mathrm{C}=\mathrm{O}$ ketone), 1640 ($\mathrm{C}=\mathrm{O}$ amide) and 1635 ($\mathrm{C}=\mathrm{O}$ pyridazine ring); MS: (M^{+}) 392; Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Cl}$ (392.80): C, 61.16; H, 3.34; N, 14.26; Found: C, 61.25; H, 3.30; N, 14.29.

6-Acetyl-4-Benzoylamino-2,3-dihydro-2-(2-methoxycarbonylphenyl)pyridazin-3-one (17g). Brown crystals (from ethanol); m.p. $170^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1}: 3339$ (NH), 3077 (CH aromatic), 1799 (C=O ester), 1750 ($\mathrm{C}=\mathrm{O}$ ketone), 1690 ($\mathrm{C}=\mathrm{O}$ amide) and 1640 ($\mathrm{C}=\mathrm{O}$ pyridazine ring); MS: (M^{+}) 391; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}$ (391.39): C, 64.45; H, 4.38; N, 10.74; Found: C, 64.55; H, 4.28; N, 10.80.

General Procedure for the reaction of 2-arylhydrazono derivatives with dimethyl acetylenedicarboxylate (DMAD):

Method I (Δ): To stirred solution of triphenylphosphine (0.1 mol) and each of compound $\mathbf{6 b , \mathbf { e }}$ (0.1 mol) in dichloroethane (10 mL) was added a few drops of DMAD solution (0.1 mol) in dichloroethane $(10 \mathrm{~mL})$ then left at room temperature overnight. The solvent was removed and the residue cooled to deposit a solid, which was crystallized from the appropriate solvent.

Table 2. Comparison between microwave and conventional heating reactions.

Product	Time/min			Yield\%		
	Δ With Solvent	Δ Without Solvent	$\mu \omega$	Δ With Solvent	Δ Without Solvent	$\mu \omega$
2a	2100	-	-	-	-	-
2 b	420	480	3	79	85	96
2c	420	480	5	89	90	97
2d	420	480	5	60	77	96
2 e	420	480	1	75	88	99
$2 f$	420	480	1	80	87	98
2 g	420	480	5	61	88	97
9a	120	-	5	65	-	70
9b	120	-	15	70	-	75
9c	120	-	5	54	-	65
9d	120	-	7	40	-	95
9 e	120	-	15	60	-	99
9f	120	-	7	55	-	73
9g	120	-	15	73	-	80
9h	120	-	10	60	-	99
9 i	120	-	10	56	-	99
9j	120	-	10	95	-	98
9k	120	-	10	46	-	60
91	120	-	5	50	-	70
9m	120	-	15	65	-	70
12a	180	-	2	30	-	70
12b	180	-	2	50	-	87
14a	180	-	2	16	-	25
14b	180	-	-	40	-	-
17a	60	-	-	20	-	-
17b	60	-	-	80	-	-
17c	60	-	15	25	-	35
17d	60	-	5	25	-	40
17e	60	-	-	61	-	-
17f	60	-	-	25	-	-
17g	60	-	10	35	-	50
22a	1440	-	-	27	-	-
22b	1440	-	30	24	-	60

Method II $(\mu \omega)$: Each of compounds $\mathbf{6 b}, \mathbf{e}(0.1 \mathrm{~mol})$ and triphenylphosphine (0.1 mol) and a few drops of DMAD solution (0.1 mol), was placed in the microwave oven and irradiated at 390 W for $10-30$ min., then left to cool to room temperature and the solid was collected and crystallized from the appropriate solvent.

2,3-Dihydro-3,4-dimethoxycarbonyl-6-(2-furylcarbonyl)-2-(2-methoxycarbonylphenyl)pyridazine (22a). Yellow crystals (from ethanol); m.p. $141{ }^{\circ} \mathrm{C}$; IR: $v_{\max } \mathrm{cm}^{-1}: 3305$ (NH), 3077 (CH aromatic), 2962 (CH aliphatic), 1780, 1750 ($3 \mathrm{C}=\mathrm{O}$ ester) and 1681 ($\mathrm{C}=\mathrm{O}$ ketone); ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=3.55,3.70,3.89$ (s, 3H, $3 \mathrm{CH}_{3}$), 6.01 (s, 1H, pyridazine H-3), $6.48(\mathrm{~m}, 1 \mathrm{H}$, furyl H-4), 7.36-7.65 (m, 4H, Ar-H), 7.47, 7.77 (d, 2H, furyl H-3, H-5) and 7.83 (s, 1H, pyridazine H-5) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}: \delta=52.24,52.68,53.20$ ($3 \mathrm{COOCH}_{3}$), 57.88, 126.88, 141.01, 149.94 (pyridazine carbons), 112.29, 117.20, 121.94, 131.04, 132.34, $144.40\left(\underline{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{Me}-\mathrm{o}\right)$, 122.35, 123.91, 126.89, 147.20 (furyl carbons), 164.84, 167.03, $168.70\left(3 \mathrm{COOCH}_{3}\right)$ and $174.63(\underline{C}=\mathrm{O})$ ppm; MS: $\left(\mathrm{M}^{+}\right) 426$; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{8}$ (426.39): C, 59.16; H, 4.26; N, 6.57; Found: C, 59.10; H, 4.39; N, 6.69.

2-(2-Cyanophenyl)-2,3-dihydro-3,4-dimethoxycarbonyl-6-acetylpyridazine (22b). Yellow crystals (from ethanol); m.p. $175^{\circ} \mathrm{C}$; IR: $v_{\max } \mathrm{cm}^{-1}: 3415(\mathrm{NH}), 3013$ (CH aromatic), 2959 (CH alephatic), 2221 $(\mathrm{C} \equiv \mathrm{N}), 1746,1717$ (2C=O ester) and 1673 ($\mathrm{C}=\mathrm{O}$ ketone); ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.67,3.76$ $\left(\mathrm{s}, 3 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 6.20(\mathrm{~s}, 1 \mathrm{H}$, pyridazine $\mathrm{H}-3), 6.61-7.32(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$ and $7.80(\mathrm{~s}, 1 \mathrm{H}$, pyridazine $\mathrm{H}-$ 5) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}: ~ \delta=19.80\left(\underline{\mathrm{CH}}_{3}\right), 50.55,50.81\left(2 \mathrm{CO}-\mathrm{OCH}_{3}\right), 62.80,126.85,142.20,150.45$ (pyridazine carbons), 101.32, 113.00, 117.62, 132.81, 133.52, 147.82 ($\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}-o$), 116.50 ($\underline{\mathrm{CN}}$), 165.05, $171.20\left(2 \mathrm{COOCH}_{3}\right)$ and $196.56(\underline{\mathrm{C}}=\mathrm{O}) \mathrm{ppm}$; MS: $\left(\mathrm{M}^{+}+1\right) 342$; Anal. Calcd. For $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5}$ (341.33): C, 59.82; H, 4.43; N, 12.31; Found: C, 59.98; H, 4.35; N, 12.48.

References

1. Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.; Jacqnault, P.; Mathe, D. New solvent-free organic synthesis using focused microwaves. Synthesis 1998, 1213-1234.
2. Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted synthesis. Tetrahedron 2001, 57, 9225-9283.
3. Bougrin, K.; Loupy, A.; Soufiaoui, M. Microwave-assisted solvent-free heterocyclic synthesis. J. Photochem. Photobiol. 2005, 6, 139-167.
4. Al-Mousawi, S.; Elassar, A.; El-Apasery, M. A Microwave Assisted Diazo Coupling Reaction. Phosphorus, Sulfur, and Silicon 2006, 181, 1755-1771.
5. Al-Zaydi, K.-M.; Hafez, E.-A. 1,3-Dipolar Cycloadditions of Some Nitrilimines and Nitrile Oxides to 3-N,N-Dimethylamino-1-oxopropene Derivatives. J. Chem. Res. (S) 1999, 360-361.
6. Al-Omran, F.; Al-Awadi, N.; Yousef, O.; Elnagdi, M.-H. New Routes to 1-Functionally Substituted Arylbenzotriazoles: 3-Benzotriazol-1-yl-pyridazine-4-ones, 5-Benzotriazol-1-yl-pyridazine-6-ones and 5-Benzotriazol-1-yl-pyridazine-6-imines. J. Heterocycl. Chem. 2000, 37, 167-170.
7. Al-Saleh, B.; Abdelkhalik, M.-M.; Darwich, E.; Salah, O.-A.; Elnagdi, M.-H. Functionally Substituted Alkylbenzotriazoles: Reactivity of Alkylbenzotriazoles Toward Electrophilic and Nucleophilic Reagents. Heteroatom Chem. 2001, 12, 1-5.
8. Al-Saleh, B.; Behbehani, H.; El-Apasery, M.-A.; Elnagdi, M.-H., Enaminones as building blocks in heterocyclic synthesis: Syntheses of polyfunctionally substituted 3-azolylpyridines and azolylazoloazines by thermal and microwave heating. J. Chem. Res. 2004, 575-577.
9. Al-Zaydi, K.-M.; Hafez, E.-A.; Elnagdi, M.-H. Studies with functionally substituted heteroaromatics: a new routes for synthesis of pyridazino[2,3-a]quinazoline andpyridazino-6imine derivatives. J. Chem. Res. (S) 2000, 154-155.
10. Al-Zaydi , K.-M. Synthesis of some new 4-arylazolisoxazoles, 4-arylazopyrazles, 4-aroyl-2-aryl-1,2,3-trizoles and 3-aroylpyridazinones. J. Saudi Chem. Soc. 2002, 6, 477-484.
11. Abdelkhalik, M.-M.; Eltoukhy, A.-M.; Agamy, S.-M.; Elnagdi, M.-H. Enaminones as building blocks in heterocyclic synthesis: New syntheses of nicotinic acid and thienopyridine derivatives. J. Heterocycl. Chem. 2004, 41, 431-. 435
12. Ghozlan, S. A.-S.; Abdelhamid, I.-A.; Gaber, H.-M.; Elnagdi, M.-H. Studies on Enaminonitriles: a New Synthesis of 1,3-Substituted Pyrazole-4-carbonitrile. J. Heterocycl. Chem. 2005, 42, 1-5
13. Al-Zaydi, K.-M.; Nhare, L.M. Synthesis and Chemistry of Enaminones. Orient. J. Chem. 2006, 22, 1-28.
14. Abu-Shanab, F.-A.; Wakefield, B.; Al-Omran, F.; Abdel-Khalik, M.-M.; Elnagdi, M.-H. Alkyl(oxo)pyridazinecarbonitriles as Building Blocks in Heterocyclic Synthesis: Novel Syntheses of Pyrido[3,4-c]pyridazines, Pyrido[3,4- d]pyridazines, Thiopyrano[3,4-c]pyridazines and 1,3,4-Thiadiazaacenaphthylenes. J. Chem. Res. (S) 1995, 488-489.
15. Al-Omran, F.; Al-Awadi, N.; Abou El-Kair, A.; Elnagdi, M.-H. Synthesis of new aryl andheteroaromatic substituted pyridines, pyrazoles, pyrimidens and pyrazolo[3,4-d] pyridazines. OPPI. 1997, 29(3), 285-292.
16. Al-Zaydi, K. M.; Al-Shiekh, M.-A.; Hafez, E.-A. Enaminonitriles in heterocyclic synthesis: new routes for the synthesis of some novel azolo[1,5- a]pyrimidine, pyrimido[1,2-a]benzimidazole, pyrido[1,2-a]benzimidazole, pyrazolo[3,4-b]pyridine, pyrazole and pyrimidine derivatives. J. Chem. Res. (S) 2000, 13-15.
17. Al-Saleh, B.; Al-Awadi, N.; Al-Kanderi, H.; Abdel-Khalik, M.-M.; Elnagdi, M.-H. Studies with $2 H$-pyranones: Synthesis of new 3-substituted-4-hydroxy-2H-pyran-2-ones. J. Chem. Res. (S) 2000 16-17.
18. Hassanien, A.-A.; Ghozlan, S. A.-S.; Elnagdi, M.-H. Enaminones as building blocks inorganic synthesis: a Novel route to polyfunctionally substituted benzonitriles, pyridines, eneylbenzotriazoles and diazepines. J. Heterocycl. Chem., 2003, 40, 225-228.
19. Al-Saleh, B.; El-Apasery, M.-A.; Abdel-Aziz, R.-S.; Elnagdi, M.-H. Enaminones In Heterocyclic Synthesis and Chemical Reactivity of 3-Anilino-1-Substituted-2-Propene-1-One. J. Heterocycl. Chem. 2005, 42, 1-4.
20. Al-Omran, F.; El-Khair, A.-A. 2-(3-Arylhydrazono-3-formyl-2-oxopropyl)-1H-isoindole-1,3(2H)dione in heterocyclic synthesis. Novel derivatives of pyridazin-6(1H)-one,pyridazin-6(1H)-imine, and pyrazolo[5,1-c][1,2,4]triazine incorporating an N-(2-oxoethyl)phthalimide moiety. J. Chem. Res. 2006, 6-9.
21. Al-Omran, F.; Abdel-Khalik, M. -M.; Abuel-Khair, A.; Elnagdi, M.-H. Studies With Functionally Substituted Heteroaromatics: A Novel Route for the Synthesis of 1-Aryl-6- oxopyridazinones, of 1-Arylpyridazine-6-Imines and of 1-Aryl-6-imino-4- pyridazinals. Synthesis 1996, 91-94.
22. Agamy, S.-M. 1-Substituted 3-dimethylaminoprop-2-en-1-ones as building blocks in heterocyclic synthesis: new routes to 6-aroylpyridazin-3-ones, 4,6-diaroylpyridazin-3-imines and 3-aroylpyrazolo[5,1-c][1,2,4]triazines. J. Chem. Res. (S) 2001, 349-350.
23. Al-Zaydi, K.-M.; Elnagdi, M.-H. Pyridopyridazines, Benzimidazolopyrimidines Triazolopyrimidines, 9-Oxo-2,3,6,7-tetraazabicyclo[3.3.1]nona-3,7-diene and Aroylcinnolines from 2-Arylhydrazono-3-oxopropanals. Z. Naturforsch. 2004, 59b, 1-5.
24. Al-Saleh, B.; El-Apasery, M.-A.; Elnagdi, M.-H. Studies with 3-substituted 2-arylhydrazono-3oxoaldehydes: new routes for synthesis of 2-arylhydrazono-3-oxonitriles, 4-unsubstituted 3,5diacylpyrazoles and 4-arylazophenols. J. Chem. Res.(S) 2004, 578-580.
25. El-Dusouqui, O. M.-E.; Abdelkhalik, M.-M.; Al-Awadi, N.; Dib, H.-H.; Georg, B.-J.; Elnagdi, M.-H. Chemistry of 2-arylhydrazonals: utility of substituted 2-arylhydrazono-3-oxoalkanals as precursors for 3-oxoalkanonitriles, 3-aminoisoxazole and 1,2,3- and 1,2,4-triazoles. J. Chem. Res. (S) 2006, 295-302.
26. Al-Zaydi, K.-M. Microwave Assisted Synthesis, Part 1: Rapid Solventless Synthesis of 3Substituted Coumarins and Benzocoumarins by Microwave Irradiation of Corresponding Enaminones. Molecules 2004, 8, 541-555.
27. Al-Zaydi, K.-M.; Borik, R.-M.; Elnagdi, M.-H. 2-Arylhydrazonopropanals as Building Blocks in Heterocyclic Chemistry: Microwave Assisted Condensation of 2-Arylhydrazonopropanals withAmines and Active Methylene Reagents. Molecules 2004, 9, 910-923.
28. Abdellah, S.-O.; Metwally, N.-H.; Anwar, H.-F.; Elnagdi, M.-H. Synthesis and chemical reactivity of 3-oxo-2-arylhydrazono-propanenitriles. J. Heterocycl. Chem. 2005, 42, 781-786.
29. Behbehani, H.; Abdel-Khalik, M.-M.; Elnagdi, M.-H. New syntheses of substituted pyridazin-6ones and pyridazin-6-imines. Org. Prep. Proced. Int. 1999, 31, 551-557.
30. Abdel-Khalik, M.-M.; Agamy S.-M.; Elnagdi, M.-H. Chemistry of 2-Aryl hydrazonopropanals: Novel Synthesis of 1,6-Dihydropyridazines and 5-Heteroaryl Substituted Pyrazolo[1,5a]pyrimidines and Pyrazolo[3,4-b]pyridines. Synthesis 2001, 1-5.
31. Al-Shiekh, M.-A.; Salah El-Din, A.-M.; Hafez, E.-A.; Elnagdi, M.-H. α-Enones in heterocyclic synthesis, Part I. Classical synthetic and enviromentally friendly synthetic approaches to alkyl and acyl azoles and azines. J. Chem. Res. 2004, 174-179.

Sample Availability: Contact author.
© 2007 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.

