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Abstract: CoMFA, CoMSIA and eigenvalue analysis (EVA) were performed to study the 
structural features of 61 diverse dibenzodioxepinone and dibenzodioxocinone analogues to 
probe cholesteryl ester transfer protein (CETP) inhibitory activity. Three methods yielded 
statistically significant models upon assessment of cross-validation, bootstrapping, and 
progressive scrambling. This was further validated by an external set of 13 derivatives. Our 
results demonstrate that three models have a good interpolation as well as extrapolation. 
The hydrophobic features were confirmed to contribute significantly to inhibitor potencies, 
while a pre-oriented hydrogen bond provided by the hydroxyl group at the 3-position 
indicated a good correlation with previous SAR, and a hydrogen bond acceptor may play a 
crucial role in CETP inhibition. These derived models may help us to gain a deeper 
understanding of the binding interaction of these lactone-based compounds and aid in the 
design of new potent compounds against CETP.  
 
Keywords: CoMFA; CoMSIA; eigenvalue analysis; dibenzodioxepinone and 
dibenzodioxocinone analogues; cholesteryl ester transfer protein inhibitors. 
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Introduction  
 

Cholesteryl ester transfer protein (CETP) is an important glycoprotein in human plasma that 
mediates the transfer of neutral lipids among lipoproteins. To date, the role of CETP in coronary heart 
disease (CHD) is still not fully understood. Some consider it detrimental toward CHD by lowering 
atheroprotective high density lipoprotein-cholesterol (HDL-C) and raising proatherogenic very low 
density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C). However, 
other researchers contend that CETP has beneficial effects by facilitating cholesterol removal through 
the reverse cholesterol transport pathway. Although there continues to be debate on the issues 
surrounding CETP [1-5], various reversible and irreversible CETP inhibitors have already been 
reported [6-12]. Furthermore, Roche’s JTT-705 [10] and Merck’s anacetrapib [12] are both entering 
phase III clinical trials to treat Coronary Heart Disease (CHD) or CHD Risk-Equivalent Disease. All 
this shows that the development of safe and effective CETP inhibitors are potential for a novel and 
important class of drugs that combat lipidaemia. 

Bayer reported a series of lactone-based compounds (Figure 1) as attractive CETP inhibitors [7], 
but no data about their mechanism(s) of action have been reported. The crystal structure of CETP [13] 
reveals the most unusual structural feature of the binding site of neutral lipids - a long tunnel (60 Å) 
with a very large volume (2,560 Å3). Further, the tunnel is lined with hydrophobic amino acid side 
chains. All of these features indicate a large degree of uncertainty with the results of the docking 
studies. Consequently, three-dimensional quantitative structure-activity relationship (3D-QSAR), a 
ligand-based approach, may be a more informative way to investigate a variety of receptor-ligand 
interactions in this challenging system.  

 
Figure 1. The structural core of lactone-based derivatives. 
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Herein, we present a 3D-QSAR study to investigate the correlation of dibenzodioxepinone and 

dibenzodioxocinone derivatives with the inhibition of CETP by employing comparative molecular 
field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and eigenvalue 
analysis (EVA). To the best of our knowledge, the present studies represent the first comprehensive 
3D-QSAR investigation of the CETP inhibition by lactone-based compounds and the resulting models 
should help to understand the binding interaction of these agents and offer utility in the rational design 
of more effective and specific CETP inhibitors. This may aid in determining whether they could 
represent a novel therapeutic approach toward treating CHD patients with low HDL-C levels. 
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Results and Discussion  
 

A data set of 61 diverse lactone-based analogues was selected as a training set to derive the 
conventional CoMFA, CoMSIA and EVA models; an additional 13 compounds were used to test the 
accuracy of these models.  
 
CoMFA results 

 
We first investigated the effect of varying parameters on the derived models using leave-one-out 

cross-validated PLS analysis. The best model yielded a q2 value of 0.666, and the optimal combination 
of parameters was identified as (1) a column filtering energy cutoff at 4.18 kcal/mol, (2) a sp3 carbon 
atom with +1 charge as probe, and (3) a 2.0 Å grid spacing. Since q2 may vary as much as 0.5 units 
toward a different orientation or placement of the aligned molecules, an all-orientation search (AOS) 
and an all-placement search (APS) were applied to identify that with the highest q2 value. The optimal 
orientation was derived from AOS, with a q2 value of 0.699. With the steric/electrostatic field cutoff at 
20.9 kcal/mol, an even better model was generated to afford a q2 of 0.724. Region focusing was 
considered as an additional strategy to improve q2. Nevertheless, when tested with progressive 
scrambling, the derived model did not provide improved results. Thus the final noncross-validated PLS 
analysis yielded a conventional r2 of 0.922, a low standard estimated error of 0.254, and a large F-
value of 225.181. 
 
CoMSIA results 

  
To describe the overall ligand environment in the binding pocket, all CoMSIA models were 

developed based on all five fields. First, a better model was obtained by the optimal settings, with a 0.2 
attenuation factor, a column filtering energy cutoff of 6.27 kcal/mol, and a 2.5 Å grid spacing. This 
model yielded a q2 of 0.708. In addition, region focusing and progressive scrambling were explored as 
above. The difference from the CoMFA results lies in the region-focused model manifested as an 
improved CoMSIA model with a q2 of 0.740. As such, the final noncross-validated PLS analysis 
model was established from region-focused descriptors. 
 
EVA results  

 
Unlike CoMFA and CoMSIA, EVA employs a novel alignment-free descriptor of molecular 

structure, not field descriptors. Based on the default parameters, the derived EVA descriptor consisted 
of 761 variables per structure. For a standard QSAR dataset the number of variables is so larger that 
PLS was used to provide a robust regression analysis. It was found that the derived EVA model was 
comparable, in statistical terms, to two former models (Table 1). With an optimal number of 
components 2, the EVA model had a higher q2 of 0.754, a lower conventional r2 of 0.834 and a higher 
standard estimated error of 0.367.  
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Table 1. Summary of 3D-QSAR analyses. 

 CoMFA CoMSIA EVA 

Components 3 3 2 
q2 0.724 0.740 0.754 

Conventional r2 0.922 0.842 0.834 
Standard error of estimate 0.254 0.361 0.367 

F values 225.181 101.238 146.138 
Bootstrapping    

r2
bootstrapping 0.922±0.019 0.845±0.031 0.857±0.028 

Standard error of estimate bootstrapping 0.240±0.113 0.338±0.143 0.322±0.137 
Progress scrambling    

Q2 0.493 0.597 0.639 
cSDEP 0.646 0.576 0.540 

dq2′/dr2
yy′ 0.924 1.042 0.952 

Predictive r2 0.823 0.782 0.571 
Fraction    

Steric 0.594 0.204  
Electrostatic 0.406 0.166  
Hydrophobic  0.303  

Hydrogen bond donor  0.139  
Hydrogen bond acceptor  0.187  

 
The predicted pIC50 value for each compound in the training set and its residual value are shown in 

Table S1 (see Supplementary data). Generally, extrapolations of up to one order of magnitude (± 1 log 
unit) are acceptable. Fortunately, there is no outlier in all three models (Figure 2). The largest residual 
in two models is that of compound 4 (0.99) in the CoMSIA model, which still falls within one log unit. 

 
Figure 2. Plots of experimental and predicted pIC50 values of the training (•) and test (○) 
sets in the CoMFA (a), CoMSIA (b) and EVA (c) models. The solid line is the regression 
line for the training set predictions, while the dotted lines indicate the ±1.0 log point error 
margins. 
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Validation of models 
 

Leave-one-out cross-validated PLS was introduced to generate an initial measure of the accuracy of 
model interpolation. The study suggested that all the derived models had a good cross-validated 
correlation (q2 > 0.6). Although the q2 value of the CoMFA model was lower than those of the other 
two models, conventional r2 and F-value were higher, while the standard estimated error was lower. As 
a result, the cross-validated PLS analysis indicated that the CoMFA model was superior to the 
CoMSIA and EVA models. 

We further performed bootstrapping analyses to evaluate the robustness and statistical confidence 
of the final models. The results indicated a high confidence limit to all three models, with the CoMFA 
model performing better, in agreement with the above results. 

Concurrently, progressive scrambling was calculated to assess the dependence of the derived model 
on chance correlations. All three models were well behaved, with the components for the noncross-
validation analysis found optimal for each, as well as a minimal cSDEP value and a maximal Q2 value 
(Table 1). This suggests that all models are stable, with the EVA model performing best. 

In order for models to be useful toward lead optimization, they must have reasonable extrapolative 
validity in addition to interpolative accuracy. Subsequently, an external validation was preformed on a 
test set of 13 compounds outside the training set to evaluate their predictive ability. All the compounds 
were predicted well by three models, with residuals within 1 log unit (Table 2). Moreover, the CoMFA 
and CoMSIA models gave good predictive r2 values of 0.823 and 0.782, respectively; while the 
predictive r2 value of the EVA model is lower, at only 0.571. The CoMFA model again appears to 
have better external predictive ability than the other two models by comparison of the residual 
distribution and the predictive r2 values. 

 
Table 2. Experimental and predicted values for the test set. 

Compd Obsd pIC50 
CoMFA CoMSIA EVA 

predicted residual predicted residual predicted residual 

E3 6.00 5.64 0.36 5.45 0.55 5.45 0.55 
E8  5.30 5.23 0.07 5.09 0.21 5.17 0.13 
E12 5.22 5.66 -0.44 5.25 -0.03 5.62 -0.40 
E22 6.15 5.87 0.28 5.78 0.37 5.67 0.48 
E23  6.70 6.44 0.26 6.61 0.09 6.12 0.58 
E27  5.70 6.05 -0.35 6.39 -0.69 6.02 -0.32 
E32 6.00 5.86 0.14 6.29 -0.29 5.78 0.22 
E39 7.22 6.82 0.40 7.34 -0.12 7.10 0.12 
E40 7.00 6.72 0.28 7.25 -0.25 6.40 0.60 
E49 7.22 7.49 -0.27 7.44 -0.22 7.86 -0.64 
E70  6.10 6.15 -0.05 6.03 0.07 5.79 0.31 
E73  6.70 6.44 0.26 6.69 0.01 6.18 0.52 
E74  6.70 6.75 -0.05 6.91 -0.21 6.93 -0.23 
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Overall, three models are statistically significant with a high confidence level, and have a good 
interpolation as well as extrapolation. Further, we confirmed that the internal and external predictive 
ability of the CoMFA model is superior; however, the CoMSIA model shows more stable than the 
CoMFA model, and the EVA model shows most stable with the least external predictivity. 
 
3D-QSAR contour analysis 

 
The results obtained from CoMFA and CoMSIA were graphically interpreted through the 

stdev*coefficient contour maps (Figures 3-6). To select the appropriate contour levels for each feature, 
respective histograms of the actual field values were analyzed, and contour levels that produced 
chemically meaningful contour maps were selected. These contour maps provide a detailed 
understanding of the binding mode of dibenzodioxepinone and dibenzodioxocinone derivatives, 
highlighting the key structural features required for the CETP affinity. 

The crystal structure of CETP [13] reveals a very large hydrophobic pocket, with 44% of the amino 
acid residues being hydrophobic. Analysis of the fractions of five fields with the CoMSIA model 
confirmed that the hydrophobic effect dominantly determines the binding affinity (Table 1). As shown 
in Figure 3, a large hydrophobic region (yellow) and a small hydrophilic area (white) appear near the 
11-position, and the most potent compounds each have a hydrophobic 11-substituent. For compound 
63, only a small portion resides in the hydrophobic region, which is actually a hydrophilic sulfonyl 
moiety, leading to a weak activity (pIC50 = 5.00) with this compound. Further, the existence of some 
hydrophilic group near the white hydrophilic contour has a positive effect on the activity as indicated 
by compounds 11 and 41 (an oxygen or nitrogen atom), which have higher CETP inhibitory activity 
than compounds 14 and 32, respectively.  
 

Figure 3. Hydrophobic maps from the CoMSIA model. Compound 63 is shown inside the 
field. The two yellow areas (contour level 0.02) suggest that hydrophobic substituents will 
result in an increase in activity, while the white region (contour level -0.01) suggests that a 
corresponding decrease will result. 

 
Hydrophobic groups at the 10-position will favor compound activity. Compound 57, which bears a 

10-ethyl group is more potent than compound 45 with a 10-chloride substituent. However, the 10-
cyclopropyl group in compound 48 (pIC50 = 7.24) lessens the overall activity, compared to the 10-
methyl substituent in compound 54 (pIC50 = 7.52). This may be due to the torsional force of the 
cyclopropyl group, which is strong enough to bias the lowest energy conformation away from the 
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optimal bioactive conformation or cause the compound in a high-energy state. A hydrophobic group 
near the 8-position is also better for activity. For example, though an 11-isopentyloxy substituent in 
compound 3 is more hydrophobic than an 11-methoxy moiety in compound 4, these two compounds 
are actually equal in activity owing to a hydrophobic ethylene group occupying the 8-position of 
compound 4.  

In the hydrogen bond acceptor field, a large magenta polyhedron indicates that acceptor groups are 
favored at the carbonyl oxygen atom in the 11-substituent or either of the other two oxygen atoms in 
the core ring (Figure 4a). In the hydrogen bond donor field, the two cyan areas indicate that donors are 
favored at the hydroxyl group at the 3-position, while one purple area denotes a region where a donor 
group disfavors this binding (Figure 4b). Brückner et al. [7] have reported that only the (S)-enantiomer 
is active (all the compounds used in this study are (S)-enantiomers), which may correlate with the 
orientation of hydrogen bond. Compound 38 is indicative of this phenomenon, in which the hydroxyl 
hydrogen is far from two cyan areas, unlike compound 56. As a result, the activity of compound 38 is 
poor, even though the substituents in both molecules are quite similar. 

 
Figure 4. Hydrogen bond acceptor (a) and donor (b) contour maps from the CoMSIA 
model. Compound 55 is shown inside two fields. The magenta map (contour level 0.03) 
and two red maps (contour level – 0.015) denote favorable and unfavorable regions for 
hydrogen bond acceptor groups, respectively. Isopleths in cyan (contour level 0.005), and 
purple (contour level –0.03) represent favorable and unfavorable areas for hydrogen bond 
donor groups, respectively. 

 
In the steric contour maps (Figure 5), two models indicate a low tolerance for bulky substituents at 

the 3-position and a high tolerance of bulky groups at the 10- or 11-position. Compound 51 is less 
potent than compound 53 because an isobutyl group at R1 is partially inserted into the small yellow  
contour close to the 3-position, while a larger neopentyl moiety in compound 53 extends beyond the 
yellow contour. As exemplified by the most potent compound 55, a large rigid ranched-bicycle at the 
11-position, and an ethyl group at the 10-position both fit into the green area. However, there is a steric 
limit for the two small yellow contours outside the green contour near the 11-position in the CoMFA 
model. Compound 64 shows worse activity than compound 22, because the n-pentylsulfonic group at 
the 11-position overlaps with the larger yellow contour. The two models also differ in that there exist a 
small green contour adjacent to the 8-position and two yellow contours near the 9-position in the 
CoMFA model. Though an 11-methoxy group is smaller than the isopentyloxy group, compound 4 
with a larger 8-vinyl group has equal activity to compound 3. Compound 43 exhibits lower activity 
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than compound 3, probably due to the presence of a larger difluoromethyl group at the 9-position, 
rather than a smaller methyl group. 
 

Figure 5. Steric maps from the CoMSIA (a) and CoMFA (b) models. Compound 51 is 
shown inside the CoMSIA field, while compound 55 is shown inside the CoMFA field. 
Green contours (contour level: CoMFA: 0.03; CoMSIA: 0.02) encompass regions that 
favor bulky groups, while yellow contours (contour level: CoMFA: –0.01; CoMSIA: –0.001) 
highlight areas that disfavor bulky groups. 

  
The electrostatic contour maps are plotted in Figure 6. Both models indicate that more negatively 

charged 11-substituents will have a positive effect on the potency. For example, compounds 24–31 all 
exhibit lower activity due to the lack of electron density in this region. Additionally, the CoMSIA 
contour map shows that a positive 11-carbon or a positive 4-substituent will increase ligand binding 
affinity. Nevertheless, it is difficult to explain why there are two opposite contour areas close to the 
hydroxyl moiety at the 3-position in the CoMFA electrostatic contour plot. They may be a 
computational artifact.  
 

Figure 6. Electrostatic maps from the CoMSIA model (a) and CoMFA model (b). 
Compound 55 is shown inside two field models. Red isopleths (contour level: CoMFA: –
0.02; CoMSIA: –0.015) define regions where electronegative groups will increase the 
activity, while blue contours (contour level: CoMFA: 0.03; CoMSIA: 0.012) define 
regions where an increase in positive potential will enhance the affinity. 

  
From the above comparisons, we conclude that the priority of the 3-, 10- and 11-substituents in the 

CoMFA model is in good agreement with that of the CoMSIA model, further validating the reliability 
of the derived models.  
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Graphical interpretation of EVA Results 
 

Unlike CoMFA and CoMSIA, EVA uses 2D plots to visualize the EVA descriptor in the form of a 
‘spectrum’, although this descriptor is not intended to simulate the infrared spectrum of a molecule. 
This permits the interpretation of the EVA descriptor by examination of the distribution of vibrations 
in a molecule or in a set of molecules. 

The Discriminant Power profile of the EVA model is shown in Figure 7. The largest variations over 
the training set are contributed at frequencies centered around 1390 and 3070 cm-1, corresponding to 
C-H bending and stretching vibrations. There are prominent peaks in these two regions for the most 
active compound 55, which possesses many CH3 or CH2 groups at the 3-, 10-, and 11-positions. But 
these peaks are sharply attenuated in the EVA profile for the least active compound 19, which 
possesses much less alkyl groups at the corresponding positions. This means that a large and 
hydrophobic group at the 10-, or 11-position will increase CETP inhibitory activity, in accordance 
with the CoMFA and CoMSIA results. Nevertheless, whether in the fingerprint region (200-1500 cm-1) 
or in the functional group region (1500-4000 cm-1), most of the group frequencies overlap and are 
nonspecific, so it is difficult to correlate them with the activity. 
 

Figure 7. Characteristics of the EVA profiles. EVA pseudo-spectra of the weakest 
compound 19 (a) and the most potent compound 55 (b) are given by black and blue lines, 
respectively; the Discriminant Power profile of the training set is given by the red line. 

 
 
Conclusions 

 
In this study, we have investigated the CoMFA, CoMSIA and EVA models based on a training set 

of 61 structurally diverse dibenzodioxepinone and dibenzodioxocinone derivatives, followed by 
validation of the results by an external test set of 13 analogues. Three models demonstrated excellent 
internal and external predictive ability, which was shown by several strategies including cross-
validation, bootstrapping, progressive scrambling, and predictive r2.  

Overall, the EVA model is most stable, which is not sensitive to molecular alignment and only 
slightly sensitive to molecular conformation. In our case, it is somewhat difficult to interpret most 
molecular features with the activity. And CoMFA performed either similarly or better than CoMSIA in 
the steric and electrostatic fields, while the CoMSIA model was more valuable for the three fields that 
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contributed significantly to the binding with CETP (hydrophobic, hydrogen bond acceptor, and 
hydrogen bond donor). The CoMSIA analysis indicated that variations in the binding affinity are 
dominated by hydrophobic interactions, consistent with the fact that approximately 44% of the amino 
acid residues in CETP are hydrophobic. The orientation of the hydroxyl group in the 3-substituent 
plays a crucial role in determining the biological activity: the inactivity of the (R)-enantiomer may be a 
result of a lacking hydrogen bond with the hydrogen bond acceptor near the 3-position. Additionally, 
the CoMSIA model suggests that a hydrogen bond acceptor may have a positive effect on the potency. 

The excellent correlation with several experimental studies suggests that these 3D-QSAR models 
are reliable, helping us to understand the binding interaction of these lactone-based compounds and 
providing a helpful guideline for further lead optimization. The features derived from the above 
models bear a close correlation with the structural variations inherent in the training set, so other 
structurally distinct data may likely result in diverse features causing different conclusions. In 
summary, although there exist conflicting viewpoints over the link between CHD and CETP 
inhibition, our preliminary findings may aid in identifying potent and specific CETP inhibitors that 
may be used to more clearly elucidate the role of CETP in atherosclerosis, and offer more significant 
insights into the overall pharmacology of this system. 
 
Experimental  

 
All calculations were performed using SYBYL 6.91 on a Silicon Graphics Fuel workstation with 

IRIX 6.5 operating system. 

Data sets for analysis 

All the lactone-based derivatives used for all 3D-QSAR analyses, with pIC50 values (-logIC50) 
varying from 4.7 to 7.82, were pooled from the work of Brückner et al. [7, 14] Among them, 61 
compounds with diverse substituents at the 3-, 7-, 8-, 9-, 10-, and 11-positions constituted the training 
set, and we used the same criteria to select additional 13 compounds as a test set for model validation; 
there was a similar distribution of activities across both sets (Table 3). An attractive feature of the 
selected inhibitors is the rigid three-ring dibenzodioxepinone or dibenzodioxocinone core structure, 
which makes them more amenable to 3D-QSAR analyses than flexible molecules. 

 
Table 3. Structures and activities of all the dibenzodioxepinone and dibenzodioxocinone 
derivatives used for 3D-QSAR studies. 

Compd R1 n R2 R3 R4 R5 R6 pIC50 

1 CH2CH(CH3)2 0 – H CH3 H 
O

 
6.10 

2 CH2CH(CH3)2 0 – H CH3 H O

O

 6.05 

3a CH2CH(CH3)2 0 – H CH3 H O  6.00 

4 CH2CH(CH3)2 0 – CH=CH2 CH3 H OMe  6.00 
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Table 3. Cont. 

Compd R1 n R2 R3 R4 R5 R6 pIC50 

5 CH2CH(CH3)2 0 – H CH3 H O
 5.70 

6 CH2CH(CH3)2 0 – H CH3 H O

 5.52 

7 CH2CH(CH3)2 0 – H CH3 H 
O

 5.40 

8a CH2CH(CH3)2 0 – H CH3 H O
 5.30 

9 CH2CH(CH3)2 0 – H CH3 H OH
O

 5.30 

10 CH2CH(CH3)2 0 – H CH3 H 
O

 5.22 

11 CH2CH(CH3)2 0 – H CH3 H 
O

O  5.22 

12a CH2CH(CH3)2 0 – H CH3 H O

O
O

 5.22 

13 CH2CH(CH3)2 0 – H CH3 H 

O

O

O
O

O

 
5.22 

14 CH2CH(CH3)2 0 – H CH3 H O
O

 5.10 

15 CH2CH(CH3)2 0 – H CH3 H O  4.92 

16 CH2CH(CH3)2 0 – H CH3 H O  4.89 

17 CH2CH(CH3)2 0 – H CH3 H O

O
O

 4.80 

18 CH2CH(CH3)2 0 – H CH3 H O  4.74 

19 CH2CH(CH3)2 0 – Br CH3 Br OMe 4.70 

 20 CH2CH(CH3)2 1 H H CH3 H O

O

 
6.60 

21 CH2CH(CH3)2 1 H CH3 CH3 CH3 O

O

 
6.70 

22a CH2CH(CH3)2 1 H H CH3 H  (CH3)2CHSO2O 6.15 

23a CH2CH(CH3)2 1 H Cl CH3 Cl O

O

 
6.70 

24 CH2C(CH3)3 1 H H CH3 H O  5.82 

25 CH2CH(CH3)2 1 H H CH3 H  5.70 

26 CH2CH(CH3)2 1 H F CH3 H O  6.30 

27a CH2CH(CH3)2 1 H H CH3 H  5.70 

28 CH2CH(CH3)2 1 H CN CH3 H O  5.52 

29 CH2CH(CH3)2 1 CH3 H CH3 H O  5.30 

30 CH2CH(CH3)2 1 H Br CH3 Br F
F

F
O

 6.00 

31 CH2CH(CH3)2 1 H H CH3 H 
O

 
5.82 

32a CH2CH(CH3)2 1 H H CH3 H F

O
O

 
6.00 
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Table 3. Cont. 

Compd R1 n R2 R3 R4 R5 R6 pIC50 

33 CH2CH(CH3)2 1 H H CH3 H O

OF

F
 

6.15 

34 CH2CH(CH3)2 1 H Cl CH3 H O

O

F

 
6.52 

35 CH2CH(CH3)2 1 H Cl CH3 Br 
O

O

 
7.15 

36 CH2CH(CH3)2 1 H Cl CH3 Br O

O

 6.60 

37 CH2CH(CH3)2 1 H Br CH3 Br 
O

O

 
7.00 

38 CH2CH(CH3)2 1 H CH3 CH3 CH3 
O

O

 
6.82 

39a CH2CH(CH3)2 1 H Cl CH3 Cl 
O

O

 
7.22 

40a CH2CH(CH3)2 1 H Cl CH3 Cl O

O

 7.00 

41 CH2CH(CH3)2 1 H H CH3 H 
N

O

O

 
6.70 

42 CH2CH(CH3)2 1 H Cl CH3 Cl 
N

O
O

O

 
6.52 

43 CH2CH(CH3)2 1 H H CF2H H O  5.30 

44 CH2CH(CH3)2 1 H Br CH3 Cl O

O

 
7.15 

45 CH2CH(CH3)2 1 H H CH3 Cl O

O

 
7.12 

46 CH2CH(CH3)2 1 H Cl CH3 Br O

O

 
7.22 

47 CH2CH(CH3)2 1 H Cl CH3 CH3 O

O

 
7.30 

48 CH2CH(CH3)2 1 H Cl CH3  O

O

 
7.24 

49a CH2C(CH3)3 1 H Cl CH3  O

O

 
7.22 

50 CH2C(CH3)3 1 H Cl CH3 Br O

O

 
7.49 

51 CH2CH(CH3)2 1 H Cl CH3 CH2OCH3 O

O

 
7.30 

52 CH2CH(CH3)2 1 H Cl CH3 Br O

O

 
7.05 

53 CH2C(CH3)3 1 H Cl CH3 CH2OCH3 O

O

 
7.40 
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Table 3. Cont. 

Compd R1 n R2 R3 R4 R5 R6 pIC50 

54 CH2CH(CH3)2 1 H Cl CH3 CH3 O

O

 
7.52 

55 CH2C(CH3)3 1 H Cl CH3 CH2CH3 O

O

 
7.82 

56 CH2CH(CH3)2 1 H CH3 CH3 CH3 O

O

 
7.22 

57 CH2CH(CH3)2 1 H H CH3 CH2CH3 O

O

 
7.40 

58 CH2CH(CH3)2 1 H Cl CH3 CH2CH3 O

O

 
7.24 

59 CH2CH(CH3)2 1 CH3 H CH3 H O

O

 
7.00 

60 CH2CH(CH3)2 1 H F CH3 CH3 O

O

 
7.26 

61 CH2CH(CH3)2 1 H H CH3 H O  4.89 

62 CH2CH(CH3)2 1 H H CH3 H O

 5.82 

63 CH2CH(CH3)2 1 H H CH3 H CF3SO2O 5.00 

64 CH2CH(CH3)2 1 H H CH3 H CH3(CH2)4SO2O 5.40 

65 CH2CH(CH3)2 1 H H CH3 H S
O

O
O

F

F

F

 
5.22 

66 CH2CH(CH3)2 1 H H CH3 H N
O

O

 
5.52 

67 CH2CH(CH3)2 1 H H CH3 H N
O

O

 6.10 

68 CH2CH(CH3)2 1 H H CH3 H N
O

O

 
6.15 

69 CH2CH(CH3)2 1 H H CH3 H N
O

O

 6.40 

70a CH2CH(CH3)2 1 H H CH3 H O

O

 
6.10 

71 CH2CH(CH3)2 1 H H CH3 H O

O

 
6.22 

72 CH2CH(CH3)2 1 H H CH3 H 
O

O

 
6.70 

73a CH2CH(CH3)2 1 H H CH3 H 
O

O

 
6.70 

74a CH2CH(CH3)2 1 H H CH3 H 
O

O

 
6.70 

a Table note: these compounds are used as a test set. 
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Conformational analysis and alignment 
 

Bioactive conformations and molecular alignment are two vital parameters to construct more 
reliable CoMFA and CoMSIA models. Unfortunately, to date, neither the crystal structure of a ligand-
receptor complex nor the identification of a specific active site is available for these lactone-based 
analogues. As such, we chose the most potent compound 55 (IC50 = 15 nM), as a template in this 
section. 

The conformations of computationally energy-minimized molecules generally depend on the initial 
conformation. Additionally, a ligand may not bind to the receptor in the energy-minimized 
conformation, and instead, a certain degree of torsional freedom may be required to yield a lower 
energy ligand-receptor complex [15-16]. Here, simulated annealing was applied at a high temperature 
(e.g., 1000 K) to overcome torsional energy barriers providing access to alternate low-energy 
conformations. 

First, an initial geometry optimization was performed using Powell method (the Tripos force field, 
Gasteriger-Hückel charges, 1000 iterations, and an energy convergence cutoff of 0.001 kcal·mol-1·Å-1). 
Next, simulated annealing was conducted by heating at an initial temperature of 1000 K for 1000 fs, 
and then cooling to 250 K within 1500 fs of annealing time. The exponential annealing function was 
utilized, and 10 cycles were conducted. Next, the conformations at 250–300 K were calculated by 
hierarchical clustering in the Advanced CoMFA module. The lowest energy conformer in each larger 
cluster was selected for further minimization as described above. Finally, all minimized conformers 
were superimposed by the SYBYL Matchfit function, and the most similar conformer to the others was 
chosen as a template.  

The remaining molecules were generated based on the template conformation, and then optimized 
as described. These were then superimposed onto the template on the dibenzodioxocinone backbone, 
and a proper conformer was determined according to alignment (Figure 8).  

 
Figure 8. Alignment of the lactone-based analogues from the training set. 
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CoMFA study 
 
CoMFA calculates steric fields using a Lennard-Jones potential and electrostatic fields using a 

Coulombic potential [17]. To improve the signal-to-noise ratio, a variable column filtering energy 
cutoff was set at 2.09, 4.18, 6.27, 8.63, 10.45, and 12.54 kcal/mol. Several probes (C.3, O.3, H, N.3, 
and N.pl3) and grid spacings (1.0, 1.5, 2.0, 2.5, and 3.0 Å) were taken into account as well. On the 
basis of the above optimal parameters, AOS and APS were executed by rotating and translating the 
molecular aggregate within the grid [18], and an orientation that yielded the highest q2 value was 
selected. Next, the model was optimized by altering steric and electrostatic field cutoffs (20.9–146.3 
kcal/mol). Finally, region focusing was utilized to improve the predictability of the model further.  
 
CoMSIA study 

 
CoMSIA employs a Gaussian function that is used to measure the distance dependence between a 

probe atom and molecular atoms [19-20]. To make a valid comparison with the CoMFA model, we 
used the optimal model obtained by AOS/APS to systematically investigate the effect of different 
attenuation factors (0.2, 0.3, and 0.4) at different column filtering energy cutoffs between 2.09 and 
12.54 kcal/mol. Finally, as in the CoMFA study, various grid spacings from 1.0 Å to 3.0 Å and region 
focusing were investigated.    
 
EVA study 

 
The EVA descriptor is derived from calculated fundamental IR- and Raman-range 

molecular vibrational frequencies, typically obtained through the application of a normal coordinate 
analysis (NCA) to an appropriately energy minimized structure [21-23]. For a compound with N atoms 
there are 3N-6 (or 3N-5 for a linear structure) normal modes of vibration. The frequency set for a 
given structure is projected onto a bounded frequency scale (BFS) covering a range from 0 to 4000 cm-

1. Next a Gaussian kernel of fixed standard deviation (σ) is placed over each and every frequency 
value. The BFS is then sampled at fixed increments of δ cm-1 and the value of the resulting EVA 
descriptor at sample point x, EVAx, is the sum of the amplitudes of the overlaid kernels at that point: 

( )2 23 6
2

1

1
2

i
N

x f
x

i
EVA e σ

σ π

−
− −

=

= ∑  

where fi is the ith normal mode frequency of the compound concerned. This procedure is repeated for 
each dataset compound and results in a descriptor set consisting of 4000/δ variables. EVA descriptors 
are independent of the orientation of the molecules in space; just sensitive to 3D structure. So the 
studies started with conformations previously converted by AOS/APS, and the default setting (σ = 10 
cm-1; δ = 5 cm-1; AM1; 200-4000 cm-1) was used for defining EVA profiles. 
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PLS analysis and validation 
 

A partial least-squares (PLS) approach was applied to derive the 3D-QSAR, employing CoMFA, 
CoMSIA and EVA descriptors as independent variables, and pIC50 values as dependent variables. To 
measure the internal predictive ability of the derived model, cross-validations were conducted through 
the leave-one-out procedure. The optimal number of components was determined in such a manner 
that each additional component increased the q2 value (cross-validated r2 value) by at least 5%. The 
final PLS analysis was conducted without cross-validation with an optimum number of components 
reported from the cross-validation results. Furthermore, bootstrapping analysis [24-26] was performed 
for 200 runs in order to estimate the confidence limits for the parameters. Additionally, progressive 
scrambling [27] was conducted for the evaluation of the sensitivity of a QSAR model to chance 
correlations. For most models, if the number of scramblings is greater than 30, the dependence on 
random number seed is not large enough to affect the outcome. Therefore, the number of scramblings 
was set to 40 and the seed value to 123456. Finally, to test the external predictivity of the final model, 
predictive r2 values were calculated on the test set using the following equation: 

r2
pred = 1 – (PRESS/SSD) 

where PRESS is the sum of the squared differences between the observed activities and predicted 
activities, and SSD is the sum of the squared differences between the measured activities of the test set 
and average measured activity of the training set. 
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