

Dual Substituent Parameter Modeling of Theoretical, NMR and IR Spectral Data of 5-Substituted Indole-2,3-diones

Ghazwan F. Fadhil¹, Hanan A. Radhy¹, Alexander Perjéssy^{2*}, Mária Šamalíková², Erkki Kolehmainen³, Walter M.F. Fabian⁴, Katri Laihia³ and Zora Šusteková²

¹ Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq.

² Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská

dolina CH-2, SK - 842 15 Bratislava, Slovak Republic. Tel. +421 2 60296604, Fax +421 2 65429064

³ Department of Chemistry, University of Jyväskylä, FIN - 40351 Jyväskylä, Finland.

⁴ Institute of Chemistry, Karl Franzens University, A - 8010 Graz, Austria.

*Author to whom correspondence should be addressed; E-mail: perjessy@fns.uniba.sk

Received: 20 May 2002; in revised form: 5 November 2002 / Accepted: 27 November / Published: 30 November 2002

Abstract: Correlations of AM1 and PM3 theoretical data, ¹³C-NMR substituent chemical shifts (¹³C-SCS) and IR carbonyl group wave numbers [v(C₃=O)] were studied using dual substituent parameter (DSP) models for 5-substituted indole-2,3-diones. For the C₇ atom a reverse substituent effect attributed to extended π -polarization was observed. On the other hand, the DSP approaches for the C₃ atom showed normal substituent effects with some contribution of reverse effect supported strongly by ¹³C-SCS correlations. In the v(C₃=O) and p(C₃=O) DSP correlations the field effect contribution predominates over the resonance effect, which justifies the using of earlier suggested vibrational coupling (V-C) model for 5- and 6-substituted indole-2,3-diones.

Keywords: 5-Substituted indole-2,3-diones, AM1 and PM3 theoretical data, IR and NMR data DSP correlations, π -polarization, reverse substituent effect.

Introduction

Indole-2,3-dione (isatin) derivatives have shown a wide scale of biological activities. Many of them are antibacterial, antifungal and anticonvulsant compounds [1-3]. Moreover, some isatin derivatives exhibit remarkable anti-HIV [4] and cytostatic activity [5]. Recently the substituent effects and the phenomenon of vibrational coupling have been studied in a series of 5- and 6-substituted indole-2,3-diones using IR, NMR and theoretical AM1 data [6]. It was shown that the two v(C=O) absorption bands of isatins could be attributed to the symmetric and the asymmetric stretching vibrational modes in the mechanically coupled cyclic α -dicarbonyl system. Consequently a vibrational coupling (V-C) model was suggested for mono substituent parameter (MSP) correlations of IR spectral data of 5- and 6-substituted derivatives.

The aim of this work was to study and compare Reynolds' and Taft's dual substituent parameter (DSP) models [7] for correlations of theoretical (AM1 and PM3) as well as ¹³C-NMR and IR spectral data of a series of 5-substituted indole-2,3-diones (1-8) (Scheme 2).

Results and Discussion

The correlations of carbonyl vibrational wave numbers $v(C_3=0)$ of the series of compounds 1 - 8 using DSP Reynolds' and Taft's models (for $\sigma_R = \sigma_R^{\circ}$) show the following results:

Reynolds' model:
$$\rho_F = 3.22$$
, $\rho_R = 3.37$ Taft's model: $\rho_F = 3.80$, $\rho_F = 3.09$ $R = 0.965$ $R = 0.982$ $F = 58.9$, $f = 0.289$ $F = 68.4$, $f = 0.221$

Generally the Taft's model approach gave statistically more significant results than the Reynolds' model for both q_C and q_M correlations. Almost identical correlations were found for the q_C and q_M property for given atom. Hence we will use the q_M value as a representative for interpretation of Taft's model correlations.

The best-chosen resonance parameters were σ_R^{BA} values for the carbon atoms and σ_R^{o} constants for the oxygen atom of the C₃=O group. This may justify the lower quality behavior of Reynolds' model mentioned earlier for carbon atoms since this uses σ_R^{o} values while the best chosen resonance parameter in Taft's model is σ_R^{BA} . According to Taft's model the atoms used in correlations can be classified into two groups: i) those within the benzene ring, namely C₇ and C_{7a} and ii) those outside the benzene ring, such as C₃ and O₃'. The atoms C₇ and C_{7a} alternate in charge sign similarly to their corresponding ρ_I and ρ_R values, ρ_I and ρ_R being negative for C₇ and indicating a reverse resonance and field effects respectively. The C₇ atom represents a meta-position in 5-X-isatin series. A similar effect was observed for α -carbon atoms of the side chains in p-disubstituted benzenes on probing ¹³C NMR substituent chemical shifts (¹³C SCS) [14]. Craik *et al.* [14] have proposed two types of field π polarizations, namely localized and extended π -polarization. It is believed that the localized π - polarization accounts for non-terminal atoms, whereas both localized and extended π -polarizations contribute to electron charge density at terminal atoms. In our case the reverse substituent effect at the C₇ site can be attributed to extended π -polarization, which predominates over the localized π -polarization in analogy to [8]. This effect can be schematically drawn as structures I and II, respectively (Scheme 1).

It should be noted that it is not necessary to have equal π -polarization at the benzene ring in 5-Xisatins, since the benzene ring is not symmetrically substituted. The data in Table 3 show that the reverse resonance effect in position 7 is larger than the reverse field effect. AM1 charge densities and Mulliken charges seem to overestimate the importance of reverse resonance effect, which is similar to the results published for p-substituted nitrobenzenes [8]. The ρ_I and ρ_R values at the C₇ atom are for both quantities q_M and q_C smaller in absolute values than the corresponding ρ_I and ρ_R at the C_{7a} atom. This resembles the results obtained in similar correlations at non-conjugative sites in aromatic compounds (meta-position) [9] or at α -carbon atoms of side chains in p-disubstituted benzenes [10]. The C₇ atom in compounds 1 - 8 is a non-conjugative site with the substituent on the C₅ atom and represents a meta-position.

Taft's DSP correlation for $q_M(C_{7a})$ is similar to those for ¹³C SCS in p-disubstituted benzenes for several reasons: i) the best chosen resonance parameter is σ_R^{BA} , ii) the field and resonance effects are normal and iii) the ρ_R/ρ_I ratio is twice [11].

DSP correlation of $q_M(C_3)$ reveals normal substituent effect (see Table 3). The $q_M(O_3)$ correlation using Taft's DSP approach shows more contribution of field than resonance effect at the oxygen atom. This agrees with the proposed structure of π -polarization giving more weight to field effect at the oxygen atom of C₃=O group. However, due to the existing of some reverse effect at C₃ atom the total ρ_I and ρ_R values for $q_M(C_3)$ are decreased when compared with ρ_I and ρ_R for $q_M(O_3)$ (see I in Scheme 2). The reverse substituent effect at C₃ site is very typical and obvious for α -carbon atom of side chains in p-disubstituted benzenes and is indicated by correlation results for ¹³C SCS of C₃ atom in series of compounds 1 - 8: ¹³C SCS = -3 σ_{I} - 0.89 σ_{R}° R = 0.990 F = 80.2, f = 0.087

Also reverse substituent effect of ¹³C SCS was observed when Hammett σ_p^- constants were used for the same set of compounds:

 13 C SCS = -1.72 $\sigma_p^- - 0.2$ R = -0.950

F = 38.8, f = 0.211

The later results are in a good agreement with those obtained for p-disubstituted benzenes [10-12]. For Taft's DSP correlations the wave numbers of the stretching vibration of $C_3=O$ group calculated using AM1 method, were employed:

 $v_c(C_3=0) = 3.8 \sigma_I + 3.09 \sigma_R^{o}$ R = 0.982 F = 88.4, f = 0.221

The above results give more weight to the field effect than resonance effect contribution of the substituent to the $v(C_3=O)$ values. The increase of the field effect is even more for the correlation of bond orders (calculated by PM3 method) and is twice of than the resonance effect contribution:

 $p(C_3=0) = 0.0173 \sigma_I + 0.0092 \sigma_R^{\circ}$ R = 0.970

F = 55.3, f = 0.117

These observations partly justify the use of the vibrational coupling (V-C) model suggested recently [6] for Hammet type correlations of the IR stretching vibrational wave numbers of 5- and 6-substituted isatins.

Conclusions

The following conclusions may be drawn on the basis of the above discussed results for 5-substituted indole-2,3-diones:

- 1) Application of the Taft's model provides always better correlation results for both Coulson charge densities and Mulliken charges than the use of Reynolds model.
- 2) For the C₇ site a reverse substituent effects was observed and is believed to be connected with the extended π -polarization.
- 3) The DSP correlation analysis for the C_3 atom of the investigated molecules shows a normal substituent effect.
- 4) The Taft's model DSP correlations for $C_3=O$ bond vibrational wave numbers and bond orders show that the contribution of the field effect to this bond is roughly twice the contribution of the resonance effect.
- 5) The previously reported vibrational-coupling model proposed on the basis of MSP correlations was confirmed using the results of DSP correlations studied in this work.

Molecules 2002, 7

Acknowledgements

The authors appreciate the financial support of the Scientific Grant Agency of the Ministry of Education of Slovak Republic (grant No. VEGA 1/7399/20).

Experimental

The ¹³C NMR data (in DMSO-d₆) and IR data (in CHCl₃) of 5-substituted indole-2,3-diones (1-8, Scheme 2) were reported previously [6] and their selection for requirements of this study is listed in Table 1.

Scheme 2.

Semiempirical molecular orbital calculations for Coulson atomic charge densities (q_C), Mulliken charges (q_M) and bond orders (p) were done by AM1 Hamiltonian [13] using the AMPAC program package [14]. Geometries were completely optimized without any restrictions using the keyword PRECISE. The selected AM1 and PM3 theoretical data for 5-substituted indole-2,3-diones (**1-8**) are given in Table 2.

Compound	1	2	3	4	5	6	7	8
¹³ C SCS C ₃) ^b ppm	184.33	184.56	_d	184.92	183.29	183.12	182.31	_ ^d
$v(C_3=O)^c$ cm ⁻¹	1744.0	1740.1	1744.0	1744.8	1750.8	1750.4	1749.0	1753.6

Table 1. Selected IR and ¹³C NMR spectral data^a for 5-substituted indole-2,3-diones (1-8)

^aTaken from[6]. ^bMeasured in DMSO-d₆. ^cMeasured in CHCl₃. ^dNot measured.

Comp.	AM1										
	$q_{\rm C}({\rm C}_3)$	$q_M(C_3)$	$q_{C}(C_{7})$	q _M (C ₇)	$q_C(C_{7a})$	$q_M(C_{7a})$	$q_{O}(C_{3'})$	$q_{M}(C_{3'})$	$v_{c}(C_{3}=O)^{a}$	p(C3=O)	
1	0.2710	0.3065	-0.1857	-0.2398	0.1110	0.1261	-0.2674	-0.2963	2134	1.9538	
2	0.2686	0.3036	-0.1488	-0.1991	0.0727	0.0883	-0.2714	-0.2999	2135	1.9578	
3	0.2708	0.3059	-0.1811	-0.2342	0.1045	0.1195	-0.2690	-0.2978	2134	1.9535	
4	0.2692	0.050	-0.1611	-0.2139	0.0976	0.1128	-0.2619	-0.2906	2135	1.9611	
5	0.2781	0.3080	-0.1880	-0.2416	0.1245	0.1392	-0.2591	-0.2881	2135	1.9589	
6	0.2709	0.3069	-0.1785	-0.2321	0.1126	0.1276	-0.2612	-0.2901	2135	1.9589	
7	0.2731	0.3111	-0.2016	-0.2510	0.1558	0.1703	-0.2420	-0.2712	2137	1.9678	
8	0.2732	0.3099	-0.2042	-0.2579	0.1389	0.1535	-0.2572	-0.2863	2136	1.9598	

Table 2. Selected AM1 and PM3 theoretical data for 5-substituted indole-2,3-diones 1-8

^aCalculated wave numbers (cm⁻¹)

The statistical result for DSP modeling of AM1 charge densities and Mulliken charges for 5-substituted isatins (1-8) according to both Reynolds' and Taft's models [7] using equation $q(A) = \rho_F \sigma_I + \rho_R \sigma_R + q(A)^H$ and σ_I and σ_R values taken from [15-18] are given in Table 3.

Table 3. DSP correlations for AM1 charge densities and Mulliken charges of compounds 1-8

q(A)		Reynold		Taft's Model						
	$ ho_{ m F}$	ρ_R	R	F ^a	$\mathbf{f}^{\mathbf{b}}$	$ ho_{ m F}$	ρ_{R}	R	F ^a	f^b
$q_{\rm C}({\rm C}_3)^{\rm c}$	0.0012	0.0070	0.950	78.7	0.3302	0.0010	0.0051	0.965	87.1	0.2186
$q_M(C_3)^c$	0.0041	0.0111	0.982	69.3	0.2119	0.0046	0.0084	0.966	95.3	0.2097
$q_C(C_7)^c$	-0.0058	-0.0866	0.960	66.0	0.2521	-0.0104	-0.0665	0.979	67.0	0.2122
$q_M(C_7)^c$	-0.0071	-0.0890	0.964	69.3	0.2481	-0.0107	-0.0686	0.982	70.5	0.1117
$q_C(C_{7a})^c$	-0.0425	0.1070	0.985	85.3	0.1083	0.0461	0.0815	0.990	98.4	0.1002
$q_M(C_{7a})^c$	0.0415	0.1065	0.985	86.7	0.1073	0.0452	0.0802	0.991	113.7	0.1013
$q_{\rm C}({\rm O}_3')^{\rm d}$	0.0249	0.0166	0.975	68.0	0.2613	0.0241	0.0153	0.984	83.5	0.2411
$q_{\rm M}({\rm O}_3')^{\rm d}$	0.0250	0.0175	0.976	67.9	0.2791	0.0253	0.0160	0.983	82.3	0.2489

^aFisher – Snedecor test for parameters significant at the 95 % level. ^bf-Test i.e. standard deviation/root mean square error of data (sd/rmse) ${}^{c}\sigma_{R} = \sigma_{R}{}^{BA}$. ${}^{d}\sigma_{R} = \sigma_{R}{}^{o}$.

References and Notes

- 1. Stojceva-Radovanovic, B.C.; Andjekovic, S.S. J. Serb. Chem. 1998, 63, 397.
- Rehman, A.-U.; Subhan, A.S; Iqbal, C.M.; Azeen, A.; Rehman, A.-U. J. Chem. Soc. Pak. 1997, 19, 239.
- 3. Singh, G.S.; Singh, T.; Lakhan, R. Indian J. Chem., Sect. B: Org. Incl. Med Chem. 1997, B36, 951.
- 4. Pandeya, S.N; Srivam, D.; Nath, G.; DeClercq, E. Sci. Pharm. 1999, 67, 103.
- Falsone, G.; Cateni, F.; El-Alali, A.; Papaiannu, A.; Ravalico, L.; Furlani, A. *Pharmacol. Let.* 1992, 2, 104.
- Radhy, H.A.; Fadhil, G.F.; Perjéssy, A.; Kolehmainen, E.; Fabian, W.M.F.; Šamalíková, M.; Laihia, K.; Šusteková, Z. *Heterocycl. Commun.* 2001, 7, 387.
- 7. Fadhil, G.F.; Collect. Czech. Chem. Commun. 1993, 58, 385.
- 8. Craik, D.J.; Brownlee, R.T.C. Progr. Physic. Org. Chem. 1983, 14, 1.
- 9. Craik, D.J.; Substituent Effects on Nuclear Shielding, Annual Reports on NMR Spectroscopy, Academic Press: London **1983**.
- 10. Al-Shawi, S.A.O. Ph.D. Thesis, University of Basrah, Basrah 1998.
- 11. Al-Amood, K.H. M.Sc. Thesis, University of Basrah, Basrah 1999.
- 12. Saleh, B.A. M.Sc. Thesis, University of Basrah, Basrah 1999.
- 13. Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. J. Am. Chem. Soc. 1985, 107, 3902.
- 14. AMPAC 6.55, 1994, Semichem, 7128 Summit, KS 66216, USA.
- 15. Ehrenson, S.; Brownlee, R.T.C.; Taft, R. W. Progr. Phys. Org. Chem. 1973, 10, 1.
- 16. Exner, O.; *Advances in Linear Free Energy Relationships*, Chapman, N. B.; Shorter, J., eds.; Plenum Press: London, 1972.
- 17. Reynolds, W.F.A.; Gomes, A.; Maron, A.; McIntyre, D.W.; Tanin, A.; Hamer, G.K.; Peat, I.R. *Can. J. Chem.* **1983**, *61*, 2376.
- 18. Levitt, L.S.; Widing, H. F. Progr. Phys. Org. Chem. 1976, 12, 119.

Sample Availability: Available from the authors.

© 2002 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.