# Synthesis, Molecular Structure and Reactivity of 5-Methylidene-1,2,3,5-tetrahydroimidazo[2,1-b]quinazolines 

Anita Kornicka ${ }^{\mathbf{1}}$, Franciszek Sączewski ${ }^{1, *}$ and Maria Gdaniec ${ }^{2}$<br>${ }^{1}$ Department of Chemical Technology of Drugs, Medical University of Gdańsk, 107 Gen. J. Hallera Str., 80-416 Gdańsk, Poland.<br>${ }^{2}$ Faculty of Chemistry, A. Mickiewicz University, 60-780 Poznań, Poland<br>* Author to whom correspondence should be addressed. E-mail: saczew@sanus.amg.gda.pl; Tel. $(+48)-58-3493250$, Fax (+48)-58-3493257

Received: 21 January 2004 / Accepted: 6 February 2004 / Published: 28 February 2004


#### Abstract

Synthesis of novel 5-methylidene-1,2,3,5-tetrahydro[2,1-b]-quinazoline derivatives 2-4 with potential biological activities mediated by $\alpha$-adrenergic and/or imidazoline receptors was performed by reacting 2-chloro-4,5-dihydroimidazole (1) with the corresponding 2-aminoacetophenones. Compound 2, which incorporates an enamine moiety, underwent a 1,3-dipolar cycloaddition reaction with the appropriate nitrones 5-9 to give 1,2,3,5-tetrahydro-imidazo[2,1-b]quinazolin-5,5'-spiro-2',3'-diphenylisoxazolidines $\mathbf{1 0 - 1 4}$. Reactions of the title compounds 2 and 4 with dimethyl acetylenedicarboxylate (DMAD) afforded dimethyl 2-(2,3-dihydroimidazo[2,1-b]quinazolin$5(1 H)$-ylidenemethyl)but-2-enedioates 15, 16. Imidazo[2,1-b]quinazoline 2 was further treated with acetyl chloride, benzoyl chloride and mesyl chloride to give the 1 -substituted derivatives 17,18 and 19 , respectively. The structures of all new compounds obtained were confirmed by elemental analysis and spectral data (IR, ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ) as well as X-ray crystallographic analysis of $\mathbf{3}$ and 18.


Keywords: 5-Methylidene-1,2,3,5-tetrahydroimidazo[2,1-b]quinazolines, 1,3-dipolar cycloaddition, alkylation, acylation, X-ray structure analysis.

## Introduction

The well known aryliminoimidazolidines such as clonidine and moxonidine exhibit antihypertensive activity mediated by $\alpha$-adrenergic and/or imidazoline receptors [1,2]. These compounds possess several rotational degrees of freedom and, therefore, offer opportunities for preparation of restricted analogs.

Previously, it was found that interconnecting the imidazoline and phenyl ring, as achieved in 2,3-dihydroimidazo[1,2-a]benzimidazole (A) or 1,2,3,5-tetrahydroimidazo[2,1-b]quinazoline (B) (Figure 1), afforded agents capable of lowering the blood pressure of experimental animals [3, 4]. On the other hand, we have recently found that certain 2,3,5,6-tetrahydroimidazo[2,1-b][1,3,5]benzotriazepines of type $\mathbf{C}$ exhibit vasocontractile activity in isolated rabbit aortic rings, which is mediated by $\mathrm{K}_{\text {ATP }}$ dependant channels [5]. The present study was aimed at synthesis, structural elucidation and reactivity of novel 5-methylidene-1,2,3,5-tetrahydroimidazo[2,1-b]quinazolines, depicted in Figure 1 as D.

## Figure 1.



A


B


C


D

## Results and Discussion

As outlined in Scheme 1, the title 5-methylidene-1,2,3,5-tetrahydroimidazo[2,1-b]quinazolines 2 and 4 were obtained by reacting equimolar amounts of 2-chloro-4,5-dihydroimidazole (1) with the appropriate 2 -aminoacetophenone in dichloromethane at ambient temperature. The reaction apparently proceeds via the intermediacy of the formed cyclic hemiaminal of type $\mathbf{E}$, which loses a water molecule with the formation of an enamine moiety. However, when compound 1 (1 equiv) was treated with 2 -aminoacetophenone ( 0.5 equiv) the reaction led to the formation of a mixture of two products which could be separated by fractional crystallization to afford 1-(4,5-dihydroimidazol-2-yl)-5-methy-lidene-1,2,3,5-tetrahydroimidazo[2,1-b]quinazoline (3) and the expected compound $\mathbf{2}$ (Scheme 1).

The structures of the compounds 2, $\mathbf{3}$ and $\mathbf{4}$ were confirmed by elemental analyses as well as IR and NMR spectroscopic data. For example, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ showed a multiplet in the range of $\delta 3.59-3.68$ originating from $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ grouping of the imidazoline ring. Two distinct singlets at $\delta$ 3.71 and $\delta 4.51$ were assigned to the nonequivalent olefinic $\mathrm{C} \beta-\mathrm{H}$ protons.

## Scheme 1.





(i) 2-Amino-4-R ${ }^{1}-5-\mathrm{R}^{2}$-acetophenone / $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ r.t.; (ii) $10 \% \mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}$; (iv) fractional crystallization.

The fusion of the two ring systems was confirmed by the presence in the ${ }^{13} \mathrm{C}$-NMR spectrum of two signals at $\delta 140.17$ and $\delta 154.11$, attributable to the $\mathrm{C}-5$ and $\mathrm{C}=\mathrm{N}$ carbon atoms of the imidazoquinazoline moiety, respectively. On the other hand, a characteristic feature of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the 1 -substituted derivative $\mathbf{3}$ is the presence of two distinct multiplets in the range of $\delta$ 3.66-3.71 and $\delta 4.07-4.09$ integrating to six and two protons, respectively, attributable to the two $\mathrm{CH}_{2}-$ $\mathrm{CH}_{2}$ groupings of the imidazoline rings. In ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum, two broad carbon resonances were observed at $\delta 45.66$ and $\delta 50.92$, attributable to $\mathrm{C}-4^{\prime}$ and $\mathrm{C}-5^{\prime}$ of the 2 -substituted imidazoline ring, and a signal at $\delta 148.75$, which in the HSQC (heteronuclear single quantum coherence) spectrum did not correlate to any ${ }^{1} \mathrm{H}$ resonances. Analysis of the long-range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ coupling pattern obtained from the HMBC (heteronuclear multiple bond coherence) experiment allowed us to assign this signal to the C-2' carbon atom of the imidazoline ring. The structure of $\mathbf{3}$ was then confirmed unambiguously by X-ray crystallographic analysis (Figure 2).

Figure 2. ORTEP drawing showing the asymmetric part of the unit cell of $\mathbf{3}$ and atom labelling. Hydrogen bonds are shown with dashed lines. Displacement ellipsoids are drawn at 50\% probability level.


The condensed tricyclic system of $\mathbf{3}$ is virtually planar with the imidazoline substituent aproximately in its plane. This conformation is stabilized by an intramolecular hydrogen bond N18H $\cdots$ N1 (H18A $\cdots$ N1A $2.10 \AA$, <N18A-H18A $\cdots N 1 A 126^{\circ} ; ~ H 18 A \cdots N 1 A 2.08 ~ \AA, ~<N 18 A-H 18 A \cdots N 1 A$ $126^{\circ}$ ). Whereas bonds C2-N1 and C14-N15 show considerable double-bond character [1.287(3) and $1.277(3) \AA$, respectively, for the molecule A; 1.280(3) and $1.277(3) \AA$, respectively, for the molecule B], the bonds C9-N1, C4-N3, N3-C2, C2-N11, N11-C14 and C14-N18 [bond lengths 1.337(3)$1.400(3) \AA]$ are intermediate between single and double bonds. The C4-C18 bond of 1.334(3) $\AA$ is longer than the double bond in a disubstituted vinyl group ( $1.321 \AA$ ) [6] indicating that it is conjugated with the guanidine fragment and the benzene ring. The nitrogen atoms N3 and N11 show sp ${ }^{2}$ hybridization, the maximum displacement of the N atom from the plane of its substituents being 0.037 Å.

## Scheme 2.





| Compd | $\mathrm{R}^{\mathbf{3}}$ |
| :---: | :--- |
| $\mathbf{5 , 1 0}$ | H |
| 6,11 | $4-\mathrm{CH}_{3}$ |
| 7,12 | $4-\mathrm{Cl}$ |
| 8,13 | $3-\mathrm{Cl}$ |
| 9,14 | $4-\mathrm{OCH}_{3}$ |

(i) THF / 7h / reflux; (ii) DMAD / $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{rt}$.

15: $\mathbf{R}^{1}=\mathbf{R}^{2}=\mathrm{H}$
16: $\mathbf{R}^{1}=\mathbf{R}^{\mathbf{2}}=\mathrm{OCH}_{3}$

Enamines are known to act as 1,3-dipolarophiles [8,9] and the 1,3-dipolar cycloaddition of nitrones to enamines resulting in the formation of isoxazolidine derivatives is well established [10-12]. Thus, the $1,2,3,5$-tetrahydroimidazo[2,1-b]quinazoline 2 was subjected to the reaction with nitrones. Upon treatment of 2 with an excess of the appropriate $N$-(benzylidene)aniline $N$-oxide 5-9 in anhydrous THF under reflux, the desired 1,2,3,5-tetrahydroimidazo[2,1-b]quinazolin-5,5'-spiro-2'-phenyl-3'-(3'- or $4^{\prime \prime}-$ $\mathrm{R}^{3}$-phenyl)isoxazolidines $\mathbf{1 0 - 1 4}$ were obtained (Scheme 2). For the structural analysis of the compounds $\mathbf{1 0 - 1 4}$ a complete assignment of all protons was made using HSQC and HMBC spectra. For example, in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{1 0}$ the AMX system was observed due to $\mathrm{CH}_{2}-\mathrm{CH}$ grouping of the isoxazoline ring formed: $\delta 3.03$ (dd, 1 H , part A of AMX system, $J_{A, M}=13.67 \mathrm{~Hz}, J_{A, X}=10.25$ Hz ); $\delta 3.42-3.47$ (dd, 1 H , part M of AMX system); $\delta 4.88$, dd, 1 H , part X of AMX system, $J_{A X}=$ $10.25 \mathrm{~Hz}, J_{M X}=8.18 \mathrm{~Hz}$ ). In the HMBC spectrum the protons $\mathrm{C} 4{ }^{\prime}-\mathrm{H}$ correlated to the carbon resonances at $\delta 71.93\left(\mathrm{C}^{\prime}\right)$ and $\delta 91.11(\mathrm{C} 5-\mathrm{O})$ and the $\mathrm{C} 3^{\prime}-\mathrm{H}$ resonance showed a long-range correlation to the carbon signal at $\delta 51.46\left(\mathrm{C}^{\prime}\right)$. Hence, the results of NMR experiments supported the presence of 5,5 '-spiro-isoxazolidine ring.

Next, we examined the reaction of 1,2,3,5-tetrahydroimidazo[2,1-b]quinazolines 2 and 4 with dimethyl acetylenedicarboxylate (DMAD). It is well known, that the reactions of enamines with DMAD, depending on solvent and temperature, afford either the cycloaddition [13, 14] or Michael addition [13, 15] products. To identify reactive sites both at the alkene and nitrogen atom incorporated into guanidine moiety, the electronic structure of 2 was studied using ab initio 6-31G** calculations [7]. Reactive sites will correspond to regions where either the highest-occupied molecular orbital (orbital-controlled reactions) or negative charge (electrostatically-controlled reactions) is large. As shown in Scheme 1, the imidazoquinazoline 2 can exist in two possible tautomeric forms, the N1-H tautomer (2) or the N10-H tautomer (2A). Calculations of the corresponding energies indicate that $\mathbf{2}$ is more stable than $\mathbf{2 A}$ by $5.1 \mathrm{kcal} / \mathrm{mol}$ (Figure 3).

Figure 3. Calculated [7] natural charges (plain), charges from Mulliken population analysis (italic) and atomic charges from electrostatic potential (underlined) for selected atoms of $\mathbf{2}$ and $\mathbf{2 A}$.


Figure 4. Absolute values of HOMO (left) and electrostatic potential (right) mapped in color [7] onto the surface of electron density of 2.


The magnitudes of the calculated charges at N1, N4 and N10 suggest that the electrostaticallycontrolled reactions of $\mathbf{2}$ and $\mathbf{2 A}$ should give rise to the formation of either the N10- or N1-substituted products. On the other hand, the HOMO ( 0.0190 a.u.) have the highest contribution for $\mathrm{C} \beta$ carbon atom of enamine moiety which should be involved in the orbital-controlled reactions with electrophiles (Figure 4). Treatment of 2 and 4 with DMAD in methanol at room temperature gave rise to the formation of the Michael addition products dimethyl 2-(2,3-dihydroimidazo[2,1-b]quinazolin-5(1H)-ylidenemethyl)but-2-enedioates ( $\mathbf{1 5}$ and 16) (Scheme 2). Apparently, the orbital-controlled reaction took place exclusively since no N -alkenylation was observed. In the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{1 5}$ the presence of two methoxycarbonyl groups was confirmed by the resonances at $\delta_{\mathrm{H}} 3.37$ and 3.76 $\left(\mathrm{OCH}_{3}\right.$ groups) and $\delta_{\mathrm{C}} 51.64$ and $52.70\left(\mathrm{OCH}_{3}\right.$ groups), as well as $\delta_{\mathrm{C}} 167.41$ and 168.77 ( $\underline{\mathrm{C}}=\mathrm{O}$ groups). The N1-H proton appeared as a broad singlet at $\delta 7.58 \mathrm{ppm}$.


Scheme 3.


17: $\mathrm{R}=\mathrm{CH}_{3}$
18: $R=\mathrm{C}_{6} \mathrm{H}_{5}$


19 (Z)

19 (E)
(i) $\mathrm{DMAD} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{rt}$;
(ii) $\mathrm{MsCl} /$ pyridine $/ 0^{\circ} \mathrm{C}-\mathrm{rt}$.

Compound 2 was then subjected to reaction with electrophilic acetyl chloride and benzoyl chloride in pyridine at ambient temperature to afford the corresponding N1-substituted enaminones $\mathbf{1 7}$ and $\mathbf{1 8}$, respectively (Scheme 3). It is well known that enaminones can exist in the four possible conformations depicted in Figure 5 due to restricted rotation around the $\mathrm{C}=\mathrm{C}$ double and the $\mathrm{C}-\mathrm{C}=\mathrm{O}$ single bonds [16-22].

Figure 5.


ZZ


ZE


EZ


EE

Analysis of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of compound $\mathbf{1 7}$ run in $\mathrm{CDCl}_{3}$ revealed doubled signals indicating the presence of a mixture of $Z Z$ and $E Z$ isomers (Figure 6). The olefinic $\mathrm{C} \beta-\mathrm{H}$ proton appears at $\delta 5.22$ for $\mathbf{1 7}(E Z)$, and at $\delta 6.13$ for $\mathbf{1 7}(Z Z)$. Deshielding of the olefinic proton of $Z Z$ isomer results from its relative proximity to the benzene ring. Furthermore, the aromatic proton $\mathrm{C} 6-\mathrm{H}$ of the $E Z$ isomer ( $\delta$ 9.03) is downfield of that of the $Z Z$ isomer ( $\delta 7.84$ ) by 1.19 ppm , while signals of other protons are not duplicated.

Figure 6.

$E=-889.87009960$ a.u. dipole moment $=2.89$ Debye

$E=-889.8683975$ a.u. dipole moment $=7.54$ Debyє



F

As shown in Figure 6, the ROESY spectrum of $\mathbf{1 7}$ displayed intense NOE cross peaks between the resonances of $\mathrm{C} \beta-\mathrm{H}$ and both $\mathrm{CH}_{3}$ and $\mathrm{C} 6-\mathrm{H}$ for ZZ isomer, whereas for isomer $E Z$ the corresponding NOE effect was observed between $\mathrm{C} \beta-\mathrm{H}$ and $\mathrm{CH}_{3}$ group only. Based on the relative intensities of signals observed in ${ }^{1} \mathrm{H}$ NMR spectrum we conclude that in $\mathrm{CDCl}_{3}$ the compound $\mathbf{1 7}$ exists in form of a mixture of two isomers $Z Z$ and $E Z$ in ratio 3.3:1.

Quantum chemical calculations [7] indicate that the $E Z$ and $Z Z$ isomers of $\mathbf{1 7}$ differ in energy by only $1.1 \mathrm{kcal} / \mathrm{mol}$. Based upon their calculated dipole moments, $E Z(\mu=7.54 \mathrm{D})$ would be predicted to predominate over $Z Z(\mu=2.89 \mathrm{D})$ in polar solvents. Indeed, an inspection of the ${ }^{1} \mathrm{H}$ NMR spectrum of 17 run in DMSO- $\mathrm{d}_{6}$ revealed a change of the $Z Z / E Z$ isomer ratio to $1: 1.1$ (see Experimental section). Hence, these data postulate that the isomerism observed is due to a restricted rotation around the $\mathrm{C}=\mathrm{C}$ double bond and the interconversion between $Z Z$ and $E Z$ isomers is possible via a zwitterionic intermediate of type $\mathbf{F}$ (Figure 6).

It should be pointed out that 2-(1-benzoyl-2,3-dihydroimidazo[2,1-b]quinazolin-5(1H)-ylidene)-1-phenyl-ethen-1-one (18) exists both in solution and solid phase as a single $Z Z$ isomer, which was confirmed by NMR spectroscopy and X-ray crystallographic analysis (Figure 7).

Figure 7. ORTEP drawing of molecule 18 with atom labelling. Displacement ellipsoids were draw at $50 \%$ probability level.


The tricyclic system of $\mathbf{1 8}$ is less planar than in $\mathbf{3}$ (cf. Figure 2) due to the steric hindrance caused by introduction of the benzoyl substituent at C 14 . The release of this strain is accomplished by a twist about the formally double C4-C14 and partially double $\mathrm{C} 14-\mathrm{C} 15$ bonds by $21.6^{\circ}$ and $31.3^{\circ}$, respectively. In effect the carbonyl O 16 is at a distance of $2.24 \AA$ from one of the imidazolidine C 13 hydrogen atoms, i.e. at a distance ca. $0.4 \AA$ shorter than the sum of appropriate van der Waals radii [23]. The formally double bond C4-C14 which is conjugated not only with the quinazoline moiety like in 3 but also with the benzoyl group is significantly longer and equals to $1.367(3) \AA$. The tertiary
amide group is strongly non-planar with atoms C 12 and C 2 deviating from the plane of $\mathrm{C} 25, \mathrm{C} 23, \mathrm{O} 24$ and N11 by -0.224 and $0.539 \AA$, respectively. Contrary to 3 , the nitrogen atoms N3 and N11 show hybridization intermediate between $\mathrm{sp}^{2}$ and $\mathrm{sp}^{3}$ with the displacement of the N atoms from the plane of their substituents equal to 0.099 and $0.146 \AA$, respectively.

Finally, we have also performed the reaction of 2 with methanesulfonyl chloride ( MsCl ). The reaction proceeded smoothly in pyridine at ambient temperature and furnished 1-mesyl derivative 19 (Scheme 3), which, as evidenced by its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum run in DMSO- $\mathrm{d}_{6}$, exists as a mixture of $Z Z$ and $E E$ isomers in a 1:9 ratio, respectively.

## Conclusions

We have found that 2-chloro-4,5-dihydroimidazole (1) reacts with 2-aminoacetophenones to give tricyclic 5-methylidene-1,2,3,5-tetrahydroimidazo[2,1-b]quinazolines (2-4) with potential circulatory activity. These compounds undergo facile reactions characteristic of enamine functionality such as $1,3-$ dipolar cycloaddition, Michael addition and electrophilic alkenylation at the $\mathrm{C} \beta$ carbon atom and/or N 1 nitrogen atom.

## Acknowledgements

We thank the State Committee for Scientific Research (Grant KBN No. 6 PO5F 03821) for financial support.

## Experimental

## General

Melting points (mp) were determined on a Büchi 535 apparatus and are uncorrected. IR spectra ( KBr pellets) were measured on a Perkin Elmer 1600 FTIR spectrophotometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR were recorded on a Varian Gemini 200 or Varian Unity 500 spectrometer and chemical shifts ( $\delta$ ) are expressed in ppm relative to internal tetramethylsilane. 2D NMR experiments were carried out on a Varian Unity Plus 500 spectrometer. Mass spectra were recorded on a Finnigan MAT 95 spectrometer at 70 eV . The starting 2-chloro-4,5-dihydroimidazole (1) and N -oxides N -(3- or $4-\mathrm{R}^{3}-$ benzylidene) aniline (5-9) were prepared according to procedures described previously [24, 25].

5-Methylidene-1,2,3,5-tetrahydroimidazo[2,1-b]quinazoline (2) and 1-(4,5-Dihydro-1H-imidazol-2-yl)-5-methylidene-1,2,3,5-tetrahydroimidazo[2,1-b]quinazoline hydrate (3).

2-Aminoacetophenone ( $1.66 \mathrm{~g}, 12.3 \mathrm{mmol}$ ) was added to a solution of $\mathbf{1}(2.5 \mathrm{~g}, 24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and the reaction mixture was stirred at ambient temperature for 17 h . The solid that
precipitated was collected by filtration, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, dried and dissolved in water ( 25 $\mathrm{mL})$. To the solution thus obtained $10 \%$ aqueous $\mathrm{NaOH}(10 \mathrm{~mL}, 25 \mathrm{mmol})$ was added and the resulting mixture was stirred for 30 min . The crude product (a mixture of $\mathbf{2}$ and $\mathbf{3}$ ) was filtered off, washed with water $(10 \mathrm{~mL})$, dried and heated in toluene ( $1: 5$ ) under reflux for 5 min . Then, the insoluble material was separated from the filtrate (denoted as "A" and stored for further work up), washed with hot toluene ( 4 mL ) and dried to give $2(0.42 \mathrm{~g}, 18 \%)$. The; mp $194-197^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3155,3110$, $3060,3020,2860,1655,1615,1595,1560,1495,1460,1440,1280 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{DMSO}_{6}\right)$ $\delta: 3.59-3.68\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.86-6.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7,-9), 7.13-7.24$ (m, 2H, H-8 and NH), 7.58 (d, $J_{6,7}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(200 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right) \delta: 39.75$, 44.14, 75.60, 118.17, 121.09, 122.91, 123.54, 129.88, 140.17, 145.68, 154.11; Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3}$ : C, 71.33; H, 5.98; N, 22.68; Found: C, 71.02; H, 5.69, N, 22.82.

The filtrate "A" was concentrated under reduced pressure. The precipitate thus obtained was collected by filtration and recrystallized from toluene to give $3(0.43 \mathrm{~g}, 13 \%)$; mp $118-121^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1}: 3320,3290,2935,2860,1655,1615,1600,1505,1485,1460,1435,1340,1280 ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3.66-3.71\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 3.72(\mathrm{~d}, J=2.44 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.07-4.09(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 4.55(\mathrm{~d}, J=2.44 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.02\left(\mathrm{ddd}, J_{7,6}=7.81 \mathrm{~Hz}, J_{7,8}=7.33 \mathrm{~Hz}, J_{7,9}=1.46 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7\right)$, $7.08\left(\mathrm{dd}, J_{9,8}=8.30 \mathrm{~Hz}, J_{9,7}=1.46 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right), 7.24-7.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 7.53\left(\mathrm{dd}, J_{6,7}=7.81 \mathrm{~Hz}, J_{6,8}\right.$ $=1.47 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ), 7.73 (br s, $1 \mathrm{H}, \mathrm{NH}$ ); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 42.36,42.72,45.66,50.92$, $77.90,119.28,123.03,124.10,125.30,130.57,140.05,142.96,148.75,157.60$; Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{5} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 61.98 ; \mathrm{H}, 5.57$; N, 25.81; Found: C, 61.72; H, 5.32, N, 25.64.

## 7,8-Dimethoxy-5-methylidene-1,2,3,5-tetrahydroimidazo[2,1-b]quinazoline (4).

The reaction of $\mathbf{1}(2.5 \mathrm{~g}, 24 \mathrm{mmol})$ with 2-amino-4,5-dimethoxyacetophenone ( $2.40 \mathrm{~g}, 12.3 \mathrm{mmol}$ ) was carried out according to the procedure described above for $\mathbf{2}$ and $\mathbf{3}$. The crude product obtained was recrystallized from dioxane to give $4(0.8 \mathrm{~g}, 33 \%)$; mp $185-189^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1}: 3170,3115$, $3075,3010,2880,2835,1655,1625,1615,1510,1490,1450,1420,1270,1225,1210 ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500$ MHz, DMSO-d $\mathrm{d}_{6}$ ) $\delta: 3.50-3.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.60-3.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-9), 6.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.99(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 6); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right.$ ) $\delta: 39.69,44.83,55.90,56.60,74.08,106.45,107.06,110.57$, 140.87, 141.12, 145.00, 151.59, 154.32; MS (70 eV) m/z: 245 (M+, 100\%); Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C, 63.67; H, 6.16, N, 17.13; Found: C, 63.35; H, 5.97, N, 17.01.

General Procedure for the Preparation of 1,2,3,5-Tetrahydroimidazo[2,1-b]quinazolin-5,5'-spiro-2'-phenyl-3'-( $3^{\prime \prime}$ - or $4^{\prime \prime}-R^{3}$-phenyl) isoxazolidines (10-14).

A mixture of $2(0.45 \mathrm{~g}, 2.4 \mathrm{mmol})$ and the appropriate $N$-(3- or 4-R ${ }^{3}$-benzylidene)-aniline $N$-oxide (5-9) ( 5.3 mmol ) in anhydrous THF ( 15 mL ) was refluxed for 7 h , and then, the resulting solution was allowed to stand overnight before workup according to procedures A or B.

Procedure A: The precipitate thus obtained was separated by suction, washed successively with anhydrous THF ( 6 mL ) and anhydrous acetone $(10 \mathrm{~mL})$ and dried to give the products $\mathbf{1 0}$ and 11, respectively.

1,2,3,5-Tetrahydroimidazo[2,1-b]quinazolin-5,5'spiro-2',3'-diphenylisoxazolidine (10). Yield 50\%; $\mathrm{mp} 173-174^{\circ} \mathrm{C}$ (dec.); IR (KBr): 3155, 3100, 3060, 2865, 2830, 1660, 1595, 1570, 1475, 1460, 1280 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta: 3.03\left(\mathrm{dd}, J_{A, M}=13.67 \mathrm{~Hz}, J_{A, X}=10.25 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-4{ }^{\prime}\right), 3.35-$ $3.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.42-3.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{M}}-4^{\prime}\right), 3.50-3.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.09-4.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.88$ (dd, $\left.J_{X, A}=10.25 \mathrm{~Hz}, J_{X, M}=8.18 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{X}}-3^{\prime}\right)$, 6.81-6.96 (m, $\left.6 \mathrm{H}, \mathrm{Ar}\right), 7.10-7.18(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.31-$ $7.43\left(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}\right.$ aromat. and NH), 7.56-7.61 (m, $3 \mathrm{H}, \mathrm{Ar)}$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta: 39.54$, $44.62,51.46,71.93,91.11,117.09,119.57,121.18,121.89,122.74,124.39,127.16,127.76,127.91$, 128.57, 129.02, 129.63, 129.81, 140.33, 146.01, 149.28, 156.67; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}$, 75.37; H, 5.80; N, 14.65; Found: C, 75.18; H, 5.48; N, 14.19.

1,2,3,5-Tetrahydroimidazo[2,1-b]quinazolin-5,5'-spiro-2'-phenyl-3'-(4'-methylphenyl-isoxazolidine (11). Yield $54 \%$; mp172-173 ${ }^{\circ} \mathrm{C}$ (dec.); IR (KBr): 3165, 3050, 3025, 2970, 2920, 2850, 1650, 1595, 1490, 1475, 1460, $1280 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta: 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.01$ (dd, $J_{A, M}=$ $\left.13.56 \mathrm{~Hz}, J_{A, X}=10.34 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-4^{\prime}\right)$, $3.43-3.63\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{M}}-4^{\prime}\right.$ and $\left.\mathrm{CH}_{2}\right), 4.10-4.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $4.83\left(\mathrm{dd}, J_{X, A}=10.34 \mathrm{~Hz}, J_{X, M}=8.52 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{X}}-3^{\prime}\right), 6.80-7.01(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 7.12-7.23(\mathrm{~m}, 5 \mathrm{H}, 4 \mathrm{H} \mathrm{Ar}$ and NH), 7.48-7.59 (m, 3H, Ar); Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 75.93$; H, 5.86; N, 14.17; Found: C, 76.21; H, 6.11; N, 13.91.

Procedure B: The insoluble side products were filtered off and then the solvent was distilled off under reduced pressure. The residue was treated with anhydrous acetone $(7 \mathrm{~mL})$, and the precipitate thus obtained was collected by filtration, washed with acetone $(5 \mathrm{~mL})$ and dried to give the products $\mathbf{1 2} \mathbf{- 1 4}$.

1,2,3,5-Tetrahydroimidazo[2,1-b]quinazolin-5,5'-spiro-2'-phenyl-3'-(4'-chlorophenyl)isoxazolidine (12). Yield $58 \%$; mp172- $175^{\circ} \mathrm{C}$ (dec.); IR (KBr): 3160, 3100, 3030, 2870, 1660, 1595, 1570, 1490, 1480, 1460, $1280 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right.$ ) $\delta: 3.01-3.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.45-3.58(\mathrm{~m}, 3 \mathrm{H}$, H-4' and $\mathrm{CH}_{2}$ ), 4.11-4.25 (m, 2H, CH2 $)$, 4.95-5.00 (m, 1H, H-3'), 6.79-7.23 (m, 9H, Ar), 7.53-7.67 (m, $5 \mathrm{H}, 4 \mathrm{H} \mathrm{Ar}$ and NH ); Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}: \mathrm{C}, 69.14$; H, 5.08; N, 13.44; Found: C, 69.27; H, 4.92; N, 13.59.

1,2,3,5-Tetrahydroimidazo[2,1-b]quinazolin-5,5'-spiro-2'-phenyl-3'-(3'-chlorophenyl)isoxazolidine (13). Yield $67 \%$; mp $158-161^{\circ} \mathrm{C}$; IR (KBr): 3160, 3095, 3060, 3025, 2885, 2865, 1660, 1595, 1570, 1485, 1475, 1460, $1280 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta: 3.04\left(\mathrm{dd}, J_{A, M}=13.56 \mathrm{~Hz}, J_{A, X}=\right.$ $\left.10.34 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-4^{\prime}\right), 3.29-3.56\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{M}}-4^{\prime}\right.$ and $\left.\mathrm{CH}_{2}\right), 4.13-4.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.00(\mathrm{dd}, J=10.34$ $\left.\mathrm{Hz}, J=9.52 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{x}}-3^{\prime}\right), 6.79-7.01(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 7.12-7.23(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.39-7.64(\mathrm{~m}, 5 \mathrm{H}, 4 \mathrm{H} \mathrm{Ar}$
and NH ); Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}: \mathrm{C}, 69.14$; H, 5.08; N, 13.44; Found: C, 68.96; H, 5.16; N, 13.62.

1,2,3,5-Tetrahydroimidazo[2,1-b]quinazolin-5,5'-spiro-2'-phenyl-3'-(4'-methoxyphenyl)isoxazolidine (14). Yield $68 \%$; mp $158-160^{\circ} \mathrm{C}$ (dec.); IR (KBr): 3160, 3100, 3030, 2880, 2830, 1650, 1595, 1570, $1510,1490,1460,1285,1250 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta: 3.04-3.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.40-$ $3.53\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\prime} 4^{\prime}\right.$ and $\left.\mathrm{CH}_{2}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.13-4.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.78-4.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right)$, 6.79-7.00 (m, 7H, Ar), 7.01-7.23 (m, 3H, Ar), 7.39 (s, 1H, NH), 7.50-7.66 (m, 3H, Ar); Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$ : C, 72.79 ; H, 5.86; N, 13.58; Found: C, 72.63 ; H, 6.11; N, 13.22.

General Procedure for the Preparation of Dimethyl 2-(7-R ${ }^{1}-8-R^{2}-2,3$-dihydroimidazo[2,1-b]-quinazol-ine-5(1H)-ylidenemethyl)but-2-enedioates (15, 16).

To a suspension of the appropriate 5 -methylidene-1,2,3,5-tetrahydroimidazo[2,1-b]quinazoline (2 or 4) ( 1.4 mmol ) in anhydrous methanol ( 20 mL ) DMAD ( $0.23 \mathrm{~g}, 1.6 \mathrm{mmoles}$ ) was added. The resulting mixture was stirred at room temperature for 15 h , and then the crude product ( $\mathbf{1 5}$ or $\mathbf{1 6}$ ) was separated by suction, washed with methanol ( 4 mL ), dried and purified by crystallization from anhydrous methanol.

Dimethyl 2-(2,3-dihydroimidazo[2,1-b]quinazolin-5(1H)-ylidenemethyl)but-2-enedioate (15). Yield 0.2 g ( $38 \%$ ); mp $183-184^{\circ} \mathrm{C}$; IR (KBr): 3170, 3115, 3020, 2880, 1715, 1700, 1665, 1600, 1580, 1460, $1250,1180 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79-3.82$ $\left(\mathrm{m}, \mathrm{CH}_{2}\right), 3.99-4.03\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 6.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{C}), 6.29(\mathrm{~d}, J=1.47 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-\mathrm{CO}), 6.91-7.00(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-7,-9$ ), $7.25-7.31$ (m, 2H, H-6, -8), 7.58 (br s, $1 \mathrm{H}, \mathrm{NH}$ ); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 39.76$, $45.76,51.64,52.70,93.02,118.54,119.18,121.95,123.20,128.09,131.70,143.67,146.16,146.84$, 155.07, 167.41, 168.77; Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$ : C, 62.38; H, 5.23; N, 12.84; Found: C, 62.01; H, 5.17; N, 12.60.

Dimethyl 2-(7,8-dimethoxy-2,3-dihydroimidazo[2,1-b]quinazolin-5(1H)-ylidenemethyl)-but-2-enedioate (16). Yield 0.31 g (57\%); mp 215-216 ${ }^{\circ} \mathrm{C}$ (dec.); IR (KBr): 3165, 3110, 3040, 2945, 2890, 2840, $1725,1700,1660,1615,1565,1440,1260,1210,1180 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 3.43(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.73-3.81\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}\right.$ and $\left.\mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.01-4.09(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$ ), 6.16 (s, 1H, HC=C), 6.24 (s, 1H, HC-CO), $6.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-9), 6.77$ (s, 1H, H-6); Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}$ : C, 58.91 ; H, 5.46; N, 10.85; Found: C, 58.79 ; H, 5.28; N, 10.51.

1-(1-Acetyl-2,3-dihydroimidazo[2,1-b]quinazolin-5(1H)-ylidene)acetone (17).

To a suspension of $2(0.53 \mathrm{~g}, 3 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ acetyl chloride ( $0.71 \mathrm{~g}, 9 \mathrm{mmol}$ ) was added at $0^{\circ} \mathrm{C}$. After an exothermic reaction had subsided ( 15 min ), the reaction mixture was stirred at
rt for 6 h . Then, the precipitate was collected by filtration, dried, and treated with water ( 10 mL ). The mixture thus obtained was made alkaline to pH 9 with $5 \%$ aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and filtered off to give the crude product 17 as a mixture of two isomers $(\boldsymbol{Z Z} / \boldsymbol{E Z})$ which was purified by crystallization from DMF. Yield $0.43 \mathrm{~g}(56 \%)$; mp 202-205 ${ }^{\circ} \mathrm{C}$; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C, 66.90; H, 5.61; N, 15.60; Found: C, 66.78; H, 5.42; N, 15.62; IR (KBr): 3060, 2920, 1680, 1645, 1635, 1600, 1560, 1520, 1480, 1470, 1410, $1380,1230,1150 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \boldsymbol{Z Z} / \boldsymbol{E} \boldsymbol{Z}$ isomer ratio 3.3:1, respectively: $\delta: 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.85-3.89\left(\mathrm{~m}, 0.92 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ imidaz., $\boldsymbol{E Z}$ isomer), 4.07-4.20 (m, $3.08 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$ imidaz., $\boldsymbol{Z Z}$ isomer), 5.22 (br s, $0.23 \mathrm{H}, \mathrm{CH}, \boldsymbol{E} \boldsymbol{Z}$ isomer), 6.13 (s, $0.77 \mathrm{H}, \mathrm{CH}, \boldsymbol{Z Z}$ isomer), $7.22-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7,-9), 7.49-7.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 7.84(\mathrm{~s}, 0.77 \mathrm{H}, \mathrm{H}-6$, $\boldsymbol{Z} \boldsymbol{Z}$ isomer), 9.03 (br s, $0.23 \mathrm{H}, \mathrm{H}-6, \boldsymbol{E} \boldsymbol{Z}$ isomer); $\boldsymbol{Z Z} / \boldsymbol{E} \boldsymbol{Z}$ isomer ratio 1:1.1, respectively: $\delta: 2.21(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 2.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.93-3.97\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ imidaz.), $5.38(\mathrm{~s}, 0.52 \mathrm{H}, \mathrm{CH}, \boldsymbol{E} \boldsymbol{Z}$ isomer), 6.30 (s, $0.48 \mathrm{H}, \mathrm{CH}, \boldsymbol{Z Z}$ isomer), $7.20-7.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7,-9), 7.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.05(\mathrm{~s}, 0.47 \mathrm{H}, \mathrm{H}-6, \boldsymbol{Z Z}$ isomer), 9.11 (s, $0.53 \mathrm{H}, \mathrm{H}-6, \boldsymbol{E} \boldsymbol{Z}$ isomer).

## 2-(1-Benzoyl-2,3-dihydroimidazo[2,1-b]quinazolin-5(1H)-ylidene)-1-phenylethen-1-one (18).

Benzoyl chloride ( $0.98 \mathrm{~g}, 7 \mathrm{mmol}$ ) was added at $0^{\circ} \mathrm{C}$ to a suspension of $2(0.43 \mathrm{~g}, 2.3 \mathrm{mmol})$ in pyridine ( 10 mL ). After the initial exothermic reaction had subsided (ca. 15 min ), the reaction mixture was stirred at rt for 6 h , and then concentrated to dryness under reduced pressure. The residue was treated with $5 \%$ aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with methylene chloride ( 100 mL ). The organic phase was dried over $\mathrm{MgSO}_{4}$ and then the solvent was evaporated under reduced pressure. The dry residue thus obtained was recrystallized from DMF to give $18(0.42 \mathrm{~g}, 47 \%) ; \mathrm{mp} 207-210^{\circ} \mathrm{C}$; IR ( KBr ): 3060, $1666,1645,1620,1595,1530,1470,1400,1315,1220 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.24-4.29$ $\left(\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 6.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}), 6.91(\mathrm{~d}, J=7.81 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.21-7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.40-7.58$ (m, 7H, Ar), 7.71-8.04 (m, 5H, Ar); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 43.27,46.90,91.16,119.07$, 123.77, 125.71, 127.01, 127.58, 128.24, 128.35, 129.01, 131.61, 131.70, 132.68, 134.36, 140.33, 143.72, 146.89, 148.28, 169.37, 186.82; MS (70 eV) m/z $393.1(\mathrm{M}+100 \%)$; Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C, 76.32; H, 4.87; N, 10.68; Found: C, 76.05 ; H, 4.61; N, 10.70.

## 1-Mesyl-5H-5-mesylomethylidene-2,3-dihydroimidazo[2,1-b]quinazoline (19).

To a suspension of $2(1 \mathrm{~g}, 5.4 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL}) \mathrm{MsCl}(1.85 \mathrm{~g}, 16.2 \mathrm{mmol})$ was added at 0 ${ }^{\circ} \mathrm{C}$. After the exothermic reaction had subsided ( 15 min ), the reaction mixture was stirred at rt for 72 h . Then, the precipitate was collected by filtration and treated with water $(10 \mathrm{~mL})$. The solution thus obtained was made alkaline to pH 9 with $5 \%$ aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and the solid that precipitated was filtered off to give the crude product 19 as a mixture of two isomers $(\boldsymbol{Z} / \boldsymbol{E})$ in a ratio $1: 9$, which was purified by crystallization from methanol. Yield: $0.7 \mathrm{~g}(38 \%)$; mp $220-221^{\circ} \mathrm{C}$ (dec.); IR ( KBr ): 3010, 2920, 1640, 1600, 1565, 1540, 1480, 1420, 1350, 1280, 1260, $1160 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ( 200 MHz , DMSO$\left.\mathrm{d}_{6}\right) \delta: 3.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.90-4.08\left(\mathrm{~m}, 3.6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ imidaz., $\boldsymbol{E}$ isomer), 4.46-4.62
(m, $0.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$ imidaz., $\boldsymbol{Z}$ isomer) $5.55(\mathrm{~s}, 0.9 \mathrm{H}, \mathrm{CH}, \boldsymbol{E}$ isomer), $6.45(\mathrm{~s}, 0.1 \mathrm{H}, \mathrm{CH}, \boldsymbol{Z}$ isomer), 7.32-7.60 (m, 3H, H-7, -8, -9), $7.98(\mathrm{~d}, J=5.35 \mathrm{~Hz}, 0.1 \mathrm{H}, \mathrm{H}-6, \boldsymbol{Z}$ isomer), $8.59(\mathrm{~d}, \mathrm{~J}=5.45 \mathrm{~Hz}, 0.9 \mathrm{H}$, H-6, $\boldsymbol{E}$ isomer); Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$ : C, 45.73; H, 4.40; N, 12.31; Found: C, 45.89; H, 4.26; N, 12.28.

## X-Ray Structure Analysis of Compounds 3 and 18 [26].

Crystal data for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$ (3): monoclinic, space group $P 2_{l} / c, a=15.952(1), b=4.995(1), c=$ $33.246(1) \AA, \beta=93.61(1), V=2643.8(6) \AA^{3}, Z=8, d_{\chi}=1.363 \mathrm{~g} . \mathrm{cm}^{-3}, T=293 \mathrm{~K}$. Data were collected for a crystal with dimensions $0.5 \times 0.3 \times 0.05 \mathrm{~mm}$ on a Kuma KM4 diffractometer using graphite monochromated $\mathrm{Cu} K_{\alpha}$ radiation. Final R indices for 3031 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$ and 368 refined parameters are: $\mathrm{R}_{1}=0.0457, \mathrm{wR}_{2}=0.1105\left(\mathrm{R}_{1}=0.0867, \mathrm{wR}_{2}=0.1270\right.$ for all 2102 data $)$.

Crystal data for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ (18): orthorhombic, space group Pna2 ${ }_{1}, a=11.6591(11), b=$ 9.8033(9), $c=17.1225(16) \AA, V=1957.1(3) \AA^{3}, Z=4, d_{\chi}=1.335 \mathrm{~g} . \mathrm{cm}^{-3}, T=293 \mathrm{~K}$. Data were collected for a crystal with dimensions $0.5 \times 0.5 \times 0.5 \mathrm{~mm}$ on a Kuma CCD diffractometer using graphite monochromated Mo $K_{\alpha}$ radiation. Final R indices for 1879 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$ and 291 refined parameters are: $\mathrm{R}_{1}=0.0376, \mathrm{wR}_{2}=0.0927\left(\mathrm{R}_{1}=0.0432, \mathrm{wR}_{2}=0.0969\right.$ for all 4437 data $)$.

## References and Notes

1. Ruffolo Jr., R.R.; Bondinell, W.; Hieble, J.P. $\alpha$ - and $\beta$-Adrenoceptors: From the Gene to the Clinic 2. Structure-Activity Relanstioships and Therapeutic Applications. J. Med. Chem. 1995, 38, 3683-3716.
2. Farsang, C.; Kapocsi, J. Imidazoline Receptors: From Discovery to Antihypertensive Therapy (facts and doubts). Brain Res. Bull. 1999, 49, 317-33.
3. Jen, T.; Bender, P.; Van Hoeven, H.; Dienel B.; Loev, B. Amidines 4. Synthesis of Tricyclic Guanidines Related to 1,2,3,5-Tetrahydroimidazo[2,1-b]quinazoline, a New Antihypertensive Agent. J. Med. Chem. 1973, 16, 407-408.
4. Jen, T.; Dienel B.; Bowman, H.; Petta, J.; Helt, A.; Loev, B. Amidines 2. A New Class of Antihypertensive Agents. 1,2,3,5-Tetrahydroimidazo[2,1-b]quinazolines. J. Med. Chem. 1972, 15, 727-731.
5. Saczewski, F.; Kobierska, E.; Petrusewicz, J.; Gendźwiłł, A.; Gdaniec, M. Sythesis and Structure of Novel 2,3,5,6-Tetrahydro-1H-imidazo[2,1-b][1,3,5]triazepines with Vasocontractile Activity in Rabbit Aortic Rings. Il Farmaco 2003, 58, 1171-1178.
6. Orpen, A.G.; L. Brammer, Allen, F.H.; Kennard, O.; Watson, D.G.; Taylor, R. In Structure Correlation; H.-B. Bürgi, J.D. Dunitz, Eds.; VCH Publishers, Inc.: New York, 1994; 2, 751.
7. Full geometry optimization, total energy calculations and obtaining the graphs that show the absolute values of the HOMO/LUMO and absolute values of the electrostatic potential on the
electron density isosurface corresponding van der Waals contact surface were performed using $a b$ initio module (6-31G** basis set, direct Hartree-Fock method) as implemented in the SPARTAN program version 5.0, 1977 (Wavefunction Inc.), installed on a Silicon Graphics O2 workstation.
8. Kuehne, M.E.; Weaver, S.J.; Franz, P. Enamines as 1,3-Dipolarophiles. J. Org. Chem. 1964, 29, 1582-1585.
9. Munk, M.E.; Kim, Y.K. Enamines as Dipolarophiles in 1,3-Dipolar Addition Reactions. J. Am. Chem. Soc. 1964, 86, 2213-2217.
10. Tsuge, O.; Tashiro, M.; Nishihara, Y. Enamine Chemistry I. Dipolar Cycloaddition Reaction of Enamines with Nitrones. Tetrahedron Lett. 1967, 38, 3769-3774.
11. Nomura, Y.; Furusaki, F.; Takeuchi, Y. 1,3-Dipolar Cycloaddition of Diphenylnitrone to Enamines. Bull. Chem. Soc. Jpn. 1967, 40, 1740.
12. Nomura, Y.; Furusaki, F.; Takeuchi, Y. "Reverse-oriented" Cycloaddition of Nitrone to Enamine. Bull. Chem. Soc. Jpn. 1970, 43, 1913.
13. Brannock, K.C.; Burpitt, R.D.; Goodlett, V.W.; Thweatt, J.G. Enamine Chemistry. II. Reactions with Acetylenedicarboxylates. J. Org. Chem. 1963, 28, 1464-1468.
14. Verboom, W.; Visser G.W.; Trompenaars, W.P.; Reinhoudt, D.N.; Harkema, S.; Van Hummel, G.J. Sythesis of Pyrrolizines by Intramolecular Capture of 1,4-Dipolar Intermediates in Reactions of Enamines with Dimethyl Acetylenedicarboxylate. Tetrahedron 1981, 37, 3525-3533.
15. Menachery, M.D.; Saā, J.M.; Cava, M.P. Dehydroaporphines. Enamine-Type Michael Additions. J. Org. Chem. 1981, 46, 2584-2588.
16. Kozerski, L.; Dąbrowski, J. Conformational Studies by Nuclear Magnetic Resonance -V. ${ }^{13} \mathrm{C}$ Spectra and Structural Problems of Enamino Carbonyl Compounds. Org. Magn. Reson. 1973, 5, 459-462.
17. Dąbrowski, J.; Kozerski, L. Conformational Studies by Nuclear Magnetic Resonance-VI. C-C and C-N Rotation Bariers in Various Enamine Derivatives. Org. Magn. Reson. 1973, 5, 469-470.
18. Dąbrowski, J.; Kamieńska-Trela, K.; Kozerski, L. Conformational Studies by Nuclear Magnetic Resonance. VII-The Direct Observation of Rotational Isomers in some Enamino Carbonyl Compounds and their Thione Derivatives by Carbon Magnetic Resonance. Org. Magn. Reson. 1974, 6, 499-502.
19. Dąbrowski, J.; K. Kamieńska-Trela, K. Electronic Spectra of $\alpha, \beta$-Unsaturated Carbonyl Compounds. I. An Evaluation of Increments Characteristic of Changes in Configuration (cis / trans) and Conformation (s-cis / s-trans) Based on Direct Observation of the Isomerization of Enamino Aldehydes and Ketones. J. Am. Chem. Soc. 1976, 98, 2826-2834.
20. Kozerski, L.; Kamieńska-Trela, K.; Kania, L. ${ }^{15}$ N-NMR Study of Activated Enamines. Structural Dependence of $\delta\left({ }^{15} \mathrm{~N}\right)$ and ${ }^{n} J(\mathrm{~N}, \mathrm{H})$ in Primary, Secondary and Tertiary Enamino-Ketones, Esters and Amides. Helv. Chim. Acta 1983, 66, 2113-2128.
21. Vdovenko, S.I.; Gerus, I.I.; Gorbunova, M.G. J. $\alpha, \beta$-Unsaturated Enamino-ketones with Trifluoromethyl Groups. Infrared Spectra and Structure. J. Chem. Soc. Perkin. Trans. 2 1993, 559-562.
22. Zhuo, J.C. ${ }^{17}$ O NMR Spectroscopic Study of Tertiary Enaminones. Magn. Reson. Chem. 1996, 34, 595-602.
23. Bondi, A. Van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441-451.
24. Trani, A.; Bellasio, E. Synthesis of 2-Chloro-2-imidazoline and its Reactivity with Aromatic Amines, Phenols, and Thiophenols. J. Heterocyl. Chem. 1974, 11, 257-261.
25. Rundel,W. In Houben-Weil, Methoden der Organischen Chemie 1968, 10/4, 311.
26. CCDC 229413 (compound 3) and 229414 (compound 18) contain the supplementary crystallographic data for these compounds. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).
© 2004 by MDPI (http:www.mdpi.org). Reproduction is permitted for noncommercial purposes.
