Molecules 2004, 9, 170–177

ISSN 1420-3049 http://www.mdpi.org

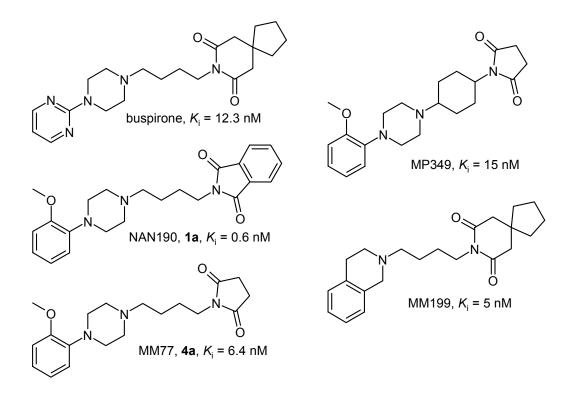
New Imide 5-HT_{1A} Receptor Ligands – Modification of Terminal Fragment Geometry

Andrzej J. Bojarski *, Maria J. Mokrosz, Beata Duszyńska, Aneta Kozioł and Ryszard Bugno

Department of Medicinal Chemistry, Institute of Pharmacology of the Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland. Tel. +48(12)-6623-365, Fax +48(12)-637-4500.

* Author to whom correspondence should be addressed; E-mail bojarski@if-pan.krakow.pl

Received: 14 January 2004 / Accepted: 19 January 2004 / Published: 28 February 2004


Abstract: Two sets of new *o*-methoxyphenylpiperazine (MPP; series **a**) and 1,2,3,4tetrahydroisoquinoline (THIQ; series **b**) derivatives, containing various imide moieties derived from NAN190, were synthesized and evaluated *in vitro* for their ability to bind to the serotonin 5-HT_{1A} and 5-HT_{2A} receptors. All new derivatives from series **a** demonstrated high 5-HT_{1A} affinities, whereas THIQ analogues were much less active. With respect to 5-HT_{2A} receptors, three MPP derivatives presented moderate activity but the rest of the investigated compounds were practically inactive. The influence of changes in terminus geometry on 5-HT_{1A} receptor affinity was analyzed in regard to model compounds NAN190 and MM199.

Keywords: 5-HT_{1A} ligands, arylpiperazine derivatives, 1,2,3,4-tetrahydroisoquinoline derivatives.

Introduction

During the last decade a large number of structurally different compounds have been proposed as 5-HT_{1A} receptor ligands. Among these, 4-substituted long chain 1-arylpiperazines (LCAPs) have been extensively studied. In particular, much effort has been devoted to the role of the terminal part in a ligand-receptor interaction, and in consequence, a great many different fragments were used [1]. The imide containing fragments constituted one of the most thoroughly investigated termini type and

among others, compounds like buspirone (anxiolytic drug; 5-HT_{1A} partial agonist [2]) or NAN190 (postsynaptic antagonist [3,4]) were found (Figure 1).

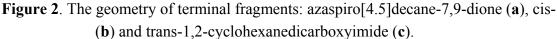
Figure 1. Structure and binding constants (K_i) of the selected 5-HT_{1A} receptor ligands.

Our systematic SAR studies of the long chain 5-HT_{1A} ligands resulted in identification of several new imide derivatives with interesting biological activity. Two NAN190 analogues: MM77 (postsynaptic antagonist [5]) and its constrained form MP349 (full antagonist [6,7]) exhibited anxiolytic-like activity in some animal models [7,8]. Replacement of 1-pyrimidinylpiperazine fragment of buspirone with 1,2,3,4-tetrahydroisoquinoline (THIQ) led to the compound MM199 [9] (Figure 1), for which anxiolytic-like and antidepressant-like effects in rats were described [10]. Continuing exploration of this type of agents we synthesized two sets of new *o*-methoxyphenylpiperazine (MPP) and THIQ derivatives and evaluated their affinity for 5-HT_{1A} and 5-HT_{2A} receptors.

Results and Discussion

The structures of NAN190 and its simplified analog MM77 were chosen as lead molecules for modification of imide terminus. All the new compounds were examined *in vitro* for their ability to displace [³H]-OH-DPAT and [³H]-ketanserine binding to rat 5-HT_{1A} and 5-HT_{2A} receptors respectively, as described in the Experimental Section. The results are presented in Table 1, where additionally, the affinities of parent compounds and previously reported derivatives **1b**, **2a**, **2b** and **4b** are also included [9,11].

No.	Imide moiety	a:		b:	
		$K_i \pm SEM (nM)$		$K_i \pm SEM (nM)$	
		5-HT _{1A}	5-HT _{2A}	5-HT _{1A}	5-HT _{2A}
1		$0.55 \pm 0.14^{a,b}$	451 ± 65	355 ± 28^{b}	2770 ± 130
2		4.0 ± 0.2^{b}	109 ± 22	50 ± 11^{b}	880 ± 12
3	H N H O	1.7 ± 0.5	185 ± 42	157 ± 17	1780 ± 25
4		$6.4 \pm 0.3^{\circ}$	1510 ± 95	2920 ± 90^{d}	NT
5	Ph * N O	6.8 ± 0.5	690 ± 40	453 ± 15	4000 ± 30
6	Ph O * N O	7.5 ± 0.7	835 ± 45	690 ± 20	4400 ± 40
7		46 ± 3	86 ± 2	620 ± 18	1230 ± 34


Table 1. Structure and 5-HT_{1A} and 5-HT_{2A} binding affinities of compounds 1-7.

^a K_i value according to Glennon et al. was 0.58 nM [3]. ^b K_i value from ref 11. ^c ref 5. ^d ref 9.

All four newly synthesized MPP derivatives (**3a** and **5a**–**7a**) showed a high affinity for 5-HT_{1A} receptors ($K_i = 1.7-46$ nM), however, lower than that of NAN190. This is thus another confirmation that the flat phthalimide terminus optimally binds to the respective receptor region. All modifications of this fragment, namely saturation (**2a** and **3a**), removal of the aromatic ring (**4a**), changes in its position (**5a** and **6a**) or enlargement (**7a**) decreased the observed 5-HT_{1A} receptor affinity. Compound **7a**, the least active at the 5-HT_{1A} sites, was found to be the most potent 5-HT_{2A} ligand. All the other MPP derivatives displayed a moderate to low affinity for 5-HT_{2A} receptors ($K_i = 109-1510$ nM), and

except for 2a, were at the same time at least 100-fold selective 5-HT_{1A} agents. This is not unexpected, since it is known that the MPP system prefers 5-HT_{1A} binding sites.

The THIQ moiety has often been used as a replacement for the arylpiperazine fragment in our studies on the role of individual pharmacophoric groups of LCAPs. Although THIQ itself does not show any affinity for the 5-HT_{1A} receptors ($K_i > 50\ 000\ nM$) [12] its substitution with butyl-azaspiro[4.5]decane-7,9-dione (MM199, Figure 1) increased the affinity to nanomolar level [9]. The same was observed in the case of the 1-adamantoyloaminobutyl THIQ derivative, for which $K_i = 0.95\ nM$ was determined [13]. It was then concluded that bulky alicyclic termini should be especially well accommodated by the 5-HT_{1A} binding site. This finding is additionally confirmed by the results obtained for the second group of imide derivatives **b**. Indeed, the highest 5-HT_{1A} receptor affinity was observed for the alicyclic systems (**2b** and **3b**), whereas aromatic groups were less favorable, although they were better than the small succinimide alone (**4b**, $K_i = 2920\ nM$). Thus, the replacement of MPP by a THIQ fragment caused a decrease of 5-HT_{1A} affinity and we did not obtain any more active compounds than the previously examined **2b** [11]. A more detailed comparison of terminal fragments of MM199, **2b** and **3b** reveals that their geometry may play a role, and that a bent configuration of the cycloalkyl part (Figure 2) is preferred. With regard to 5-HT_{2A} receptors, we did not detect a significant activity in the investigated THIQ derivatives.

As a result of present investigation three new highly active 5-HT_{1A} ligands were found (**3a**, **5a** and **6a**), which displayed a 100-fold selectivity over 5-HT_{2A} receptors. During the preparation of this manuscript, Hackling and coworkers published a paper in which compound **7a** was investigated as a dopamine D₂ and D₃ receptor ligand [14]. In our hands this derivative was a dual 5-HT_{1A}/5-HT_{2A} ligand and based on the data obtained by Hackling, it is also a potent but unselective D₂/D₃ agent ($K_i = 40$ and 29 nM, respectively). Pharmacological work is currently in progress to evaluate the 5-HT_{1A} functional profile of these four compounds.

Experimental

General

Melting points were determined on a Boetius apparatus and are uncorrected. ¹H-NMR spectra were obtained on a Varian EM-360L (60 MHz) in the CDCl₃ solution with Me₄Si as an internal reference. Elemental analyses were performed in the Institute of Organic Chemistry PAS (Warsaw, Poland), and were within 0.5% of the theoretical values. The syntheses of 2-(4-aminobutyl)-1,2,3,4-tetrahydroisoquinoline [9] and 4-(4-aminobutyl)-1-(2-methoxyphenyl)piperazine [15] have been previously reported.

General method for the preparation of compounds 3a, 3b, 5a, 5b, 6a, 6b, 7a and 7b.

Equimolar amounts (1 mmol) of the respective, commercially available acid anhydride and 4-(4-aminobutyl)-1-(2-methoxyphenyl)piperazine or 2-(4-aminobutyl)-1,2,3,4-tetrahydroisoquinoline were refluxed in xylene (20 mL) for 3 h. After the mixture was allowed to cool to room temperature, the xylene was evaporated under reduced pressure and the products were isolated on a silica gel column. Free bases were converted into the hydrochloride salts in CHCl₃ or acetone solution by treatment with excess of Et_2O saturated with gaseous HCl.

4-{4-[2-(trans-1,2-Cyclohexanedicarboxyimido)]butyl}-1-(2-methoxyphenyl)piperazine (**3a**).

Oil, yield (base) 90%; M.p. (salt) 192-194°C (acetone); $R_f = 0.45$ (CHCl₃/MeOH 19:1); ¹H-NMR (base): δ (ppm) = 7.1-6.7 (m, 4H, arom), 3.9 (s, 3H, OCH₃), 3.7-3.3 (m, 2H), 3.3-2.9 (m, 4H), 2.9-2.1 (m, 8H), 2.1-1.2 (m, 12H); $C_{23}H_{33}N_3O_3$ ·2HCl (472.03), Calcd. C 58.52, H 7.90, N 8.90; Found C 58.37, H 7.52, N 8.90.

1-(2-Methoxyphenyl)-4-[4-(3-phenylsuccinimido)butyl]piperazine (5a).

Oil, yield (base) 76%; M.p. (salt) 205-207°C (acetone); $R_f = 0.46$ (CHCl₃/MeOH 19:1); ¹H-NMR (base): δ (ppm) = 7.5-7.1 (m, 5H, arom), 7.1-6.7 (m, 4H, arom), 4.2-3.8 (m, 1H), 3.8 (s, 3H, OCH₃), 3.8-3.3 (m, 2H), 3.3-2.2 (m, 12H), 2.9-1.3 (m, 4H); $C_{25}H_{31}N_3O_3$ ·2HCl (494.464), Calcd. C 60.72, H 6.72, N 8.49; Found C 60.24, H 6.90, N 8.43.

1-(2-Methoxyphenyl)-4-[4-(3-phenylmaleicimido)butyl]piperazine (6a).

Oil, yield (base) 56%; M.p. (salt) 209-210°C (acetone); $R_f = 0.53$ (CHCl₃/MeOH 19:1); ¹H-NMR (base): δ (ppm) = 7.5-7.0 (m, 5H, arom), 7.0-6.8 (m, 4H, arom), 4.1-3.6 (m, 3H), 3.8 (s, 3H, OCH₃),

3,3-2.9 (m, 4H), 2.9-2.1 (m, 10H), 1.9-1.3 (m, 4H); C₂₆H₃₃N₃O₃·2HCl (508.49), Calcd. C 61.41, H 6.93, N 8.26; Found C 61.00, H 6.99, N 8.08.

1-(2-Methoxyphenyl)-4-[4-(1,8-naphthalimido)butyl)]piperazine (7a).

Oil, yield (base) 84%; M.p. (salt) 280-281°C (acetone); $R_f = 0.52$ (CHCl₃/MeOH 19:1); ¹H-NMR (base): δ (ppm) = 8.6(d, J=8Hz, 2H, arom), 8.2 (d, J=8Hz, 2H, arom), 7.7 (t, J=8Hz, arom), 7.1-6.7 (m, 4H, arom.), 4.5-4.0 (m, 2H), 3.9 (s, 3H, OCH₃), 3,3-2.9 (m, 4H), 2.9-2.3 (m, 6H), 2.1-1.5 (m, 4H); $C_{27}H_{32}N_3O_3$ ·2HCl (552.926), Calcd. C 58.65, H 5.83, N 7.60; Found C 58.83, H 6.36, N 7.63.

2-{4-[2-(trans-1,2-Cyclohexanedicarboxyimido)]butyl}-1,2,3,4-tetrahydroisoquinoline (3b).

Oil, yield (base) 79%; M.p. (salt) 168-170°C (acetone); $R_f = 0.49$ (CHCl₃/MeOH 19:1); ¹H-NMR (base): δ (ppm) = 7.3-6.9 (m, 4H, arom), 3.7-3.3 (m, 4H) 3.1-2.0 (m, 8H), 2.0-1.2 (m, 12H); $C_{21}H_{28}N_2O_2$ ·HCl·0.5H₂O (385.919), Calcd. C 65.35, H 7.83, N 7.26; Found C 64.99, H 7.89, N 7.08.

2-[4-(3-Phenylsuccinimido)butyl]-1,2,3,4-tetrahydroisoquinoline (5b).

Oil, yield (base) 81%; M.p. (salt) 127-129°C (acetone); $R_f = 0.39$ (CHCl₃/MeOH 19:1); ¹H-NMR (base): δ (ppm) = 7.6-7.2 (m, 5H, arom), 7.2-7.0 (m, 4H, arom), 4.1-3.3 (m, 5H), 3.3-2.3 (m, 8H), 2.1-1.3 (m, 4H); $C_{23}H_{26}N_2O_2 \cdot$ HCl \cdot 0.25H₂O (403.439), Calcd. C 68.47, H 6.87, N 6.94; Found C 68.47, H 6.89, N 6.85.

2-[4-(3-phenylmaleicimido)butyl]-1,2,3,4-tetrahydroisoquinoline (6b).

Oil, yield (base) 47%; M.p. (salt) 121-123°C (acetone); $R_f = 0.43$ (CHCl₃/MeOH 19:1); ¹H-NMR (base): δ (ppm) = 7.6-7.2 (m, 5H, arom), 7.2-6.9 (m, 4H, arom), 4.2-3.5 (m, 5H), 3.3-2.0 (m, 10H), 1.9-1.4 (m, 4H); $C_{24}H_{28}N_2O_2$ ·HCl·1.25H₂O (435.482), Calcd. C 66.19, H 7.29, N 6.43; Found C 66.43, H 7.26, N 6.16.

2-[4-(1,8-naphthalimido)butyl]-1,2,3,4-tetrahydroisoquinoline (7b).

Oil, yield (base) 40%; M.p. (salt) 265-267°C (acetone); $R_f = 0.43$ (CHCl₃/MeOH 19:1); ¹H-NMR (base): δ (ppm) = 8.6 (d, J=8Hz, 2H, arom), 8.2 (d, J=8Hz, 2H, arom), 7.7 (t, J=8Hz, 2H arom), 7.3-6.9 (m, 4H, arom), 4.5-4.0 (m, 2H, CH₂), 3.8-3.5 (m, 2H), 3,1-2.4 (m, 6H), 2.1-1.5 (m, 4H); $C_{25}H_{24}N_2O_2$. HCl·0.5H₂O (429.942), Calcd. C 69.84, H 6.09, N 6.51; Found C 70.17, H 5.63, N 6.17.

Radioligand binding studies

The *in vitro* affinity of the investigated compounds for 5-HT_{1A} and 5-HT_{2A} receptors was assessed on the basis of their ability to displace [³H]-8-OH-DPAT (222 Ci/mmol, Amersham, England) and [³H]-ketanserin (66.4 Ci/mmol, NEN Chemicals, USA), respectively. Radioligand binding experiments were carried out on rat brain using tissues from the hippocampus for 5-HT_{1A} receptors, and from the cortex for 5-HT_{2A} receptors, according to the previously published procedures [16].

 K_i values were determined from at least three competitive binding experiments in which 10–14 sample concentrations, run in triplicate, were used. The Cheng and Prusoff [17] equation was used for K_i calculations.

References

- 1. Lopez-Rodriguez, M.L.; Ayala, D.; Benhamu, B.; Morcillo, M.J.; Viso, A. Arylpiperazine Derivatives Acting at 5-HT_{1A} Receptors. *Curr. Med. Chem.* **2002**, *9*, 443.
- 2. Goa, K.L.; Ward, A. Buspirone a preliminary review of its pharmacological properties and therapeutic efficacy as an anxiolytic. *Drugs* **1986**, *32*, 114.
- Glennon, R.A.; Naiman, N.A.; Pierson, M.E.; Titeler, M.; Lyon, R.A.; Weisberg, E. NAN-190: an arylpiperazine analog that antagonizes the stimulus effects of the 5-HT1A agonist 8-hydroxy-2-(di-n- propylamino)tetralin (8-OH- DPAT). *Eur. J. Pharmacol.* 1988, 154, 339.
- 4. Zifa, E.; Fillion, G. 5-Hydroxytryptamine receptors. *Pharmacol. Rev.* 1992, 44, 401.
- Mokrosz, M.J.; Chojnacka-Wójcik, E.; Tatarczyńska, E.; Kłodzińska, A.; Filip, M.; Boksa, J.; Charakchieva-Minol, S.; Mokrosz, J.L. 1-(2-Methoxyphenyl)-4-[(4-succinimido)butyl]piperazine (MM-77): A New, Potent, Postsynaptic Antagonist of 5-HT_{1A} Receptors. *Med. Chem. Res.* 1994, 4, 161.
- Paluchowska, M.H.; Bojarski, A.J.; Charakchieva-Minol, S.; Wesołowska, A. Active Conformation of Some Arylpiperazine Postsynaptic 5-HT_{1A} Receptor Antagonists. *Eur. J. Med. Chem.* 2002, *37*, 273.
- Wesołowska, A.; Paluchowska, M.H.; Gołębiowska, K.; Chojnacka-Wójcik, E. Pharmacological Characterization of MP 349, a Novel 5-HT_{1A} Receptor Antagonist with Anxiolytic-Like Activity, in Mice and Rats. *J. Pharm. Pharmacol.* 2003, *55*, 533.
- Griebel, G.; Rodgers, R.J.; Perrault, G.; Sanger, D.J. The Effects of Compounds Varying in Selectivity as 5-HT_{1A} Receptor Antagonists in Three Rat Models of Anxiety. *Neuropharmacology* 2000, *39*, 1848.
- Mokrosz, J.L.; Dereń-Wesołek, A.; Tatarczyńska, E.; Duszyńska, B.; Bojarski, A.J.; Mokrosz, M.J.; Chojnacka-Wójcik, E. 8-{4-[2-(1,2,3,4-Tetrahydroisoquinolinyl)]-butyl}-9-azaspiro[4.5]decane-7,9-dione: A New 5-HT_{1A} Receptor Ligand with the Same Activity Profile as Buspirone. *J. Med. Chem.* 1996, *39*, 1125.

- Deren-Wesolek, A.; Tatarczynska, E.; Chojnacka-Wojcik, E. The novel buspirone analogue, 8-[4-[2-(1,2,3,4-tetrahydroisoquinolinyl)[butyl]-8-azaspiro [4.5]decane-7,9-dione, with anxiolytic-like and antidepressant-like effects in rats. *J. Psychopharmacol.* 1998, *12*, 380.
- Paluchowska, M.H.; Mokrosz, M.J.; Bojarski, A.J.; Wesołowska, A.; Borycz, J.; Charakchieva-Minol, S.; Chojnacka-Wójcik, E. On the bioactive conformation of NAN-190 (1) and MP3022 (2), 5-HT(1A) receptor antagonists. *J. Med. Chem.* 1999, *42*, 4952.
- Mokrosz, J.L.; Mokrosz, M.J.; Bojarski, A.J.; Charakchieva-Minol, S. Structure-Activity Relationship Studies of CNS Agents. Part 16: A Lower Limit of a Distance Between Crucial Pharmacophores of 5-HT_{1A} Ligands. *Pharmazie* 1994, 49, 781.
- Mokrosz, M.J.; Bojarski, A.J.; Duszyńska, B.; Tatarczyńska, E.; Kłodzińska, A.; Dereń-Wesołek, A.; Charakchieva-Minol, S.; Chojnacka-Wójcik, E. 1,2,3,4-Tetrahydroisoquinoline derivatives: a new class of 5-HT_{1A} receptor ligands. *Bioorg. Med. Chem.* 1999, 7, 287.
- Hackling, A.; Ghosh, R.; Perachon, S.; Mann, A.; Holtje, H.D.; Wermuth, C.G.; Schwartz, J.C.; Sippl, W.; Sokoloff, P.; Stark, H. N-(omega-(4-(2-methoxyphenyl)piperazin-1yl)alkyl)carboxamides as dopamine D2 and D3 receptor ligands. *J. Med. Chem.* 2003, *46*, 3883.
- Glennon, R.A.; Naiman, N.A.; Pierson, M.E.; Smith, J.D.; Ismaiel, A.M.; Titeler, M.; Lyon, R.A. N-(phthalimidoalkyl) derivatives of serotonergic agents: a common interaction at 5-HT1A serotonin binding sites? *J. Med. Chem.* 1989, *32*, 1921.
- Bojarski, A.J.; Cegła, M.T.; Charakchieva-Minol, S.; Mokrosz, M.J.; Maćkowiak, M.; Mokrosz, J.L. Structure-Activity Relationship Studies of CNS Agents. Part 9: 5-HT_{1A} and 5-HT₂ Receptor Affinity of Some 2- and 3-Substituted 1,2,3,4-Tetrahydro-β-carbolines. *Pharmazie* 1993, *48*, 289.
- 17. Cheng, Y.; Prusoff, W.H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. *Biochem. Pharmacol.* **1973**, *22*, 3099.

Sample Availability: Available from the authors.

© 2004 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.