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Abstract: The palladium catalyzed borylation of a Boc protected aminobromoquinoline 
compound with bis(pinacolato)diboron yielded a biaryl compound, resulting from cross 
coupling, as the major product, instead of the intended boronate, even though no strong 
base was used. Such results indicate that under certain conditions and with certain 
substrates, cross coupling can be a major problem during borylation, leading to 
unintended consequences. 
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Introduction 

 
Boronic acids compounds have generated much attention in both chemistry and biology in the last 

decade because of their importance in organic chemistry [1-7], medicinal chemistry [8], and sensor 
development [9-11]. Boronic acids have been widely used for saccharide sensor design because of 
their unique high affinity and reversible complexation with diols, which are commonly found on 
saccharides [12, 13]. Our lab has been engaged in the search for fluorescent sensors for saccharides for 
various applications [8, 9, 14-22]. Along this line, we are especially interested in the design and 
synthesis of fluorescent boronic acids that respond to the binding of saccharides by large changes in 
fluorescent intensities and/or wavelengths, and are water-soluble [18, 22, 23]. The ultimate goal is to 
use such reporter compounds for the construction of fluorescent sensors for cell surface saccharides for 



Molecules 2004, 9  
 

 

179

biological applications [8, 17, 19, 20]. One specific example is 8-quinoline boronic acid (8-QBA, 1), 
which shows a 40-fold fluorescence intensity change upon binding to a saccharide [18]. However, to 
incorporate this reporter compound into a diboronic acid sensor, we need to have a way to 
functionalize it so that various coupling reactions can be used to tether 8-QBA to other groups for 
improved specificity and affinity.  Therefore, we were interested in the synthesis of 2, which has a 
protected amino group that can be used for further functionalization.  Herein, we report the formation 
of a somewhat unexpected high level of cross-coupling product during the synthesis of 2 using a 
palladium catalyst, which can cause problems in the synthesis of arylboronic acids. 
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Results and Discussion 
 

Generally, there are two types of reactions used for the synthesis of arylboronic acids or 
arylboronates. One is the transmetalation between an arylmetal and a boron halide or alkoxide [24]; the 
other is the recently developed PdCl2(dppf)-catalyzed borylation of aryl halides [25, 26], triflates [27] 
or diazonium salts [28] with a tetra(alkoxy)diboron [25, 27] or  dialkoxyborane reagent [26]. The first 
method was used to prepare 8-QBA in 1959 [29], but is not compatible with certain sensitive 
functional groups such as nitro, amide, amine, and hydroxy. The latter coupling reaction can tolerate 
various functional groups and has been widely applied to the synthesis of arylboronic esters in one step 
[30]. Therefore, the palladium-catalyzed cross-coupling reaction was chosen for the preparation of 
monoboronic acid 2 (Scheme 1).  
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The synthesis of compound 2 started from 3, that was prepared by reducing 4-bromo-3-
nitrotoluene with stannous chloride [31]. A Skraup reaction was carried out using a modified 
procedure to give quinoline compound 4 [32]. Bromination of the methyl group using NBS in 
refluxing benzene under irradiation with a tungsten light gave 5 in 70% yield. The amination of 5 with 
methylamine in THF gave 6. This was followed by the protection of the amino group by the reaction 
with di-tert-butyldicarbonate [(Boc)2O] in MeOH in the presence of triethylamine (TEA) to give 7. 

The intended borylation to give 9 was carried out by following literature procedures using 
PdCl2(dppf) as the catalyst in the presence of KOAc [25]. Unexpectedly, the major product (65%) 
obtained from this palladium-catalyzed reaction was the biaryl product 8, not the intended boronic acid 
ester 9. The structure of compound 8 was characterized by 1H-NMR and mass spectrometry. Biaryl 
byproducts in palladium-mediated borylations usually result from the further Suzuki coupling reaction 
of the arylboronate product with the starting material, bromoarene, in the presence of a base such as 
K3PO4 and K2CO3. Generally speaking, potassium acetate is not a strong enough base to promote the 
Suzuki cross-coupling reaction to a significant extent in palladium-catalyzed borylation [25]. Our 
results indicate that under certain conditions and with certain substrates, such cross coupling reactions 
can be the major reaction, leading to unintended consequences. In addition, it has been reported that 
the 8-qunioline boronate can be synthesized by using palladium-catalyzed borylation with arene 
triflates [26, 27]. This suggests that the corresponding 8-quinoline triflate analog of 7 could be used as 
new substrate to perform palladium catalyzed borylation in the future in order to avoid this 
dimerization. 
 
Conclusions 
 

Suzuki cross coupling can be the major side reaction in PdCl2(dppf) -mediated borylation of 
haloarenes.  This is true even if only a weak base such as KOAc is used. Further studies are needed to 
better understand the scope that different factors affect this reaction, and how the borylation yield can 
be improved. 
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Commercially available reagents were used without additional purification unless otherwise 
indicated. Analytical thin-layer chromatography (TLC) was performed with plastic-backed TLC silica 
gel 60 F hard layer plates.  Flash chromatography was performed with silica gel (flash, 32–63 µm). 
Mass spectrometry (MS) analyses were performed by the Mass Spectrometry Facility at Georgia State 
University on a Finnigan electrospray/ion trap mass spectrometer. 1H-NMR spectra were recorded at 
300 MHz on a Varian Gemini instrument. 
 
8-Bromo-5-methylquinoline (4) 
 

A solution of 2-bromo-5-methylaniline (3, 6.8 g, 36.5 mmol), glycerol (6.7 g, 72.5 mmol), 
nitrobenzene (4.5 g, 36 mmol) in 75% H2SO4 (20 mL) was heated at 150 °C for 3 h. The solution was 
neutralized with NaOH after cooling to room temperature, and then extracted with EtOAc (3 × 120 
mL). The combined organic layers was washed with saturated brine, and then dried with MgSO4. After 
removing solvents under reduced pressure, the crude product was purified by flash column 
chromatography (hexane/EtOAc, 20:1) to give 4 (5.38 g, 67%): 1H-NMR (CD3OD) δ 8.93 (m, 1H, Ar-
H), 8.56 (m, 1H, Ar-H), 7.98 (m, 1H, Ar-H), 7.63 (m, 1H, Ar-H), 7.34 (m, 1H, Ar-H), 2.69 (s, 3H, Ar-
CH3); ESI-MS m/z 222/224 (C10H9BrN, M+1). 
 
8-Bromo-5-bromomethylquinoline (5).  
 

A mixture of 8-bromo-5-methylquinoline (4, 5 g, 22.7 mmol) and N-bromosuccinimide (4.9 g, 27.5 
mmol) in benzene (55 mL) was refluxed under irradiation with a tungsten light for 12 h. The solution 
was filtered, and the solvent was evaporated under reduced pressure. The residue was purified by flash 
column chromatography  (hexane/EtOAc, 20:1) to give 5 (4.8 g, 70%); 1H-NMR (CD3OD) δ  8.98 (m, 
1H, Ar-H), 8.73 (m, 1H, Ar-H), 8.06 (m, 1H, Ar-H) 7.70 (m, 1H, Ar-H), 7.60 (m, 1H, Ar-H), 5.01 (s, 
2H, Ar-CH2-Br); ESI-MS m/z 300/302/304 (C10H8Br2N, M+1). 
 
(8-Bromoquinolin-5-yl-methyl)methylamine (6). 
 

 To a solution of 8-bromo-5-bromomethylquinoline (5, 0.39 g, 1.3 mmol) in THF (15 mL) was 
added 40% methylamine aqueous solution (7 mL). The resulting mixture was stirred at RT for 12 h 
under nitrogen, and then the organic solvent was removed under reduced pressure. The residue was 
extracted with DCM (3 × 10 mL) and then washed with saturated brine (30 mL). After drying with 
MgSO4, evaporation of solvent provided compound 6 (0.31 g, 95%): 1H-NMR (CDCl3) δ  9.05 (m, 1H, 
Ar-H), 8.56 (m, 1H, Ar-H), 7.99 (m, 1H, Ar-H), 7.49 (m, 1H, Ar-H), 7.38 (m, 1H, Ar-H), 4.16 (s, 2H, 
Ar-CH2-N), 2.53 (s, 3H, N-CH3); ESI-MS m/z 251/253 (C11H12BrN2 , M+1). 
 
Tert-butyl N-(8-bromoquinolin-5-yl-methyl)-N-methylcarbamate (7). 
 

A mixture of (Boc)2O (1.0 g, 4.61 mmol) in MeOH (5 mL) was added slowly to a solution 
containing (8-bromo-quinolin-5-yl-methyl)methylamine (6, 0.96 g, 3.84 mmol) and triethylamine (1 
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mL) in MeOH (20 mL). The resulting solution was further stirred for 12 h, then the methanol was 
evaporated and the residue was extracted with EtOAc (3 × 10mL). The combined organic extracts 
were washed with saturated brine (30 mL), dried over MgSO4, and concentrated and dried in vacuo to 
give compound 7 (1.27 g, 95%): 1H-NMR (CD3OD) δ 8.86(m, 1H, Ar-H), 8.57 (m, 1H, Ar-H), 7.99 
(m, 1H, Ar-H), 7.52 (m, 1H, Ar-H), 7.25 (m, 1H, Ar-H), 4.82 (s, 2H, Ar-CH2-N), 2.71(s, 3H, N-CH3), 
1.39(s, 9H, -C(CH3)3); ESI-MS m/z 351/353 (C16H20BrN2O2, M+1).  
 
5,5’-Bis[[(tert-butoxycarbonyl)methylamino]methyl]-8,8’-biquinoline (8). 
 

A mixture of PdCl2(dppf) (20 mg, 0.025 mmol), potassium acetate (0.25 g, 2.55 mmol), 
bis(pinacolato)diboron (0.23 g, 0.94 mmol) and tert-butyl  (8-bromoquinolin-5-yl-methyl)-methyl-
carbamate (7, 0.30 g, 0.86 mmol) was added to a flask in a glove box under anhydrous condition. After 
addition of anhydrous DMSO (10 mL) the mixture was stirred at 80 0C for 16 h. The reaction solution 
was cooled to room temperature and poured into ice-water. The mixture was extracted with ethyl 
acetate and the combined organic layers was washed with saturated brine, dried over MgSO4, and 
concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl 
acetate, 1:1) to give 8 (0.15 g, 65%): 1H-NMR (DMSO-d6) δ 8.68 (m, 4H, Ar-H), 7.70 (m, 2H, Ar-H), 
7.52 (m, 4H, Ar-H), 5.00 (s, 2H, Ar-CH2-N), 2.88 (s, 6H, N-CH3), 1.49 (s, 18H, -C(CH3)3); ESI-MS 
m/z 543 (C32H39N4O4, M+1).  
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