
 

Molecules 2004, 9, 1010-1018 

molecules 
ISSN 1420-3049 

http://www.mdpi.org 
 

Giving Molecules an Identity. On the Interplay Between QSARs 
and Partial Order Ranking 

Lars Carlsen * 

Awareness Center, Hyldeholm 4, Veddelev, DK-4000 Roskilde, Denmark 

* To whom correspondence should be addresed: e-mail: LC@AwarenessCenter.dk 

Received: 2 June 2004 / Accepted: 30 June 2004 / Published: 31 December 2004 
 

Abstract: The interplay between ‘noise-deficient’ QSAR and Partial Order Ranking, 
including analysis of average linear ranks, constitutes an effective tool in giving 
substances which have not been investigated experimentally an identity by comparison 
with experimentally well-characterized, structurally similar compounds. It is disclosed 
that experimentally well-characterized compounds may serve as substitutes for highly 
toxic compounds in experimental studies without exhibiting the same extreme toxicity, 
while from an overall viewpoint they exhibit analogous environmental characteristics. 
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Introduction 

The lack of data for the vast majority of existing chemicals is well known and constitutes 
obviously a significant problem in relation to e.g., risk assessment. Thus, according to the European 
Commission only in the case of approximately 14% of the HPV (High Production Volume) chemicals 
on the EINECS list, comprising 100,116 entries, the minimum required data for evaluating the 
chemicals were available. For approximately 21% of the compounds no data at all concerning their 
potential impact on the environment and human health were found [1]. In a study by the Danish EPA 
[2] it was concluded that even in major sources of test data, information on selected ecotoxicological 
effects could only be found  for very limited number of the compounds on the EINECS list (acute toxic 
effect: 10.5%, reproductive damage: 2.2%, genetic damage: 3.2%, carcinogenic effect: 1.6%, effect on 
the aquatic environment: 3.5%). Since intensive and experimental evaluations of chemicals are rather 
costly [3, and references therein], QSAR derived data for physico-chemical as well as toxicological 
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endpoints appear as an attractive alternative. However, although the lack of data can be remedied to a 
certain extent through QSAR modeling, this will leave us with the possibility of characterizing the 
single molecules based on single parameters, such as solubility, octanol-water partitioning, vapor 
pressure, biodegradation - and bioaccumulation potential. However, to establish an identity for a given 
molecule, e.g., as a potential PBT substance requires taking several parameters into account 
simultaneously, i.e., Persistence, Bioaccumulation and Toxicity.  

In the present study the advantageous use of so-called “noise-deficient” QSARs, developed using 
data from experimentally well-characterized compounds as the training set, as a preprocessing tool to 
derive the desired endpoints for substances where experimental data are not available. Subsequently, 
these endpoints will be applied as descriptors in establishing a partial ordering of combined sets of 
compounds, hereby giving the experimentally not investigated compounds an identity by comparing to 
structurally related, experimentally well-characterized compounds [4,5]. 

 
Methods 

QSAR  

In the present study the end-points are generated through QSAR modeling, the EPI Suite being the 
primary tool [6]. To generate new linear “noise-deficient” QSAR models, EPI generated values for, 
e.g., log Sol, log KOW, log VP and log HLC are further treated by estimating the relationships between 
the EPI generated data and available experimental data [7] for the a series of experimentally well-
characterized compounds in the training set, the general formula for the end-points, Di, to be used 
being 

Di = ai×DEPI + bi           (1) 

DEPI is the EPI generated end-point value and ai and bi being constants. The log KOW values 
generated in this way are subsequently used to generate log BCF values according to the Connell 
formula [8] 

log BCF = 6.9×10-3×(log Kow)4 – 1.85×10-1×(log Kow)3 + 1.55×(log Kow)2  
– 4.18×log Kow + 4.72          (2) 

The model was somewhat modified. Thus, a linear decrease of log BCF with log KOW was assumed 
in the range 1 < log KOW < 2.33, the log BCF = 0.5 for log KOW ≤ 1, the latter value being in 
accordance with BCFWin [6]. Subsequently data for not characterized compounds are calculated based 
on these formulae and the appropriate EPI generated data.  

In the present study a training set consisting of up to 65 organo phosphorus (OP) insecticides are 
applied. Due to the lack of experimental data for the training set compounds with regards to their 
biodegradation, the above procedure was not applicable to the biodegradation potential, BDP3. Thus, 
data on BDP3 are used as estimated by the appropriate modules in the EPI Suite. 
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Partial Order Ranking  
 
The theory of partial order ranking is presented elsewhere [9] and its application in relation to 

QSAR is presented in previous papers [10-13]. In brief, Partial Order Ranking is a simple principle, 
which a priori includes “≤” as the only mathematical relation. If a system is considered, which can be 
described by a series of descriptors pi, a given compound A, characterized by the descriptors pi(A) can 
be compared to another compound B, characterized by the descriptors pi(B), through comparison of 
the single descriptors, respectively. Thus, compound A will be ranked higher than compound B, i.e., B 
≤ A, if at least one descriptor for A is higher than the corresponding descriptor for B and no descriptor 
for A is lower than the corresponding descriptor for B. If, on the other hand, pi(A)>pi(B) for descriptor 
i and pj(A)< pj(B) for descriptor j, A and B will be denoted incomparable. In mathematical terms this 
can be expressed as 

B ≤ A  ⇔ pi(B) ≤ pi(A) for all i         (3) 

Obviously, if all descriptors for A are equal to the corresponding descriptors for B, i.e., pi(B) = 
pi(A) for all i, the two compounds will have identical rank and will be considered as equivalent.  It 
further follows that if A ≤ B and B ≤ C then A ≤ C. If no rank can be established between A and B 
these compounds are denoted as incomparable, i.e. they cannot be assigned a mutual order. 

In partial order ranking – in contrast to standard multidimensional statistical analysis - neither 
assumptions about linearity nor any assumptions about distribution properties are made. In this way 
the partial order ranking can be considered as a non-parametric method. Thus, there is no preference 
among the descriptors. However, due to the simple mathematics outlined above, it is obvious that the 
method a priori is rather sensitive to noise, since even minor fluctuations in the descriptor values may 
lead to non-comparability or reversed ordering. The graphical representation of the partial ordering is 
often given in a so-called Hasse diagram [14-17]. In practice the partial order rankings are done using 
the WHasse software [17]. 
 
Linear extensions  

 
The number of incomparable elements in the partial ordering may obviously constitute a limitation 

in the attempt to rank e.g. a series of chemical substances based on their potential environmental or 
human health hazard. To a certain extent this problem can be remedied through the application of the 
so-called linear extensions of the partial order ranking [18,19]. A linear extension is a total order, 
where all comparabilities of the partial order are reproduced [9,16]. Due to the incomparisons in the 
partial order ranking, a number of possible linear extensions corresponds to one partial order. If all 
possible linear extensions are found, a ranking probability can be calculated, i.e., based on the linear 
extensions the probability that a certain compound have a certain absolute rank can be derived. If all 
possible linear extensions are found it is possible to calculate the average ranks of the single elements 
in a partially ordered set [20,21]. The average rank is simply the average of the ranks in all the linear 
extensions. On this basis the most probably rank for each element can be obtained leading to the most 
probably linear rank of the substances studied. 
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The generation of the average rank of the single compounds in the Hasse diagram is obtained 
applying the simple empirical relation recently reported by Brüggemann et al [22]. The average rank 
of a specific compound, ci, can be obtained by the simple relation  

Rkav(ci) = (N+1)  -  (S(ci)+1)×(N+1)/(N+1-U(ci))     
 (4)where N is the number of elements in the diagram, S(ci) the number of successors to ci and 
U(ci) the number of elements being incomparable to ci [22]. 
 
Results and Discussion 
 

The basic idea of using partial order ranking for giving molecules an identity is illustrated in 
Figure 1.  Thus, let us assume that a suite of 10 compounds has to be evaluated and that the evaluation 
should be based on three pre-selected criteria, e.g., persistence, bioaccumulation and toxicity. Let the 
resulting Hasse diagram be the one depicted in Figure 1A. If we apply the three descriptors 
representing biodegradation, bioaccumulation and toxicity, respectively, so the more persistent, the 
more bioaccumulating and the more toxic a substance would be the higher in the diagram it would be 
found, Figure 1A discloses that the compounds in the top level, i.e., compounds 1, 3, 4, 7 and 8 on a 
cumulative basis can be classified as the environmentally more problematic of the 10 compounds 
studied with respect to their PBT characteristics, whereas compound 10 that a found in the bottom of 
the diagram is the less hazardous. 

Figure 1. Illustrative Hasse diagram of A: 10 compounds using three 
descriptors and B: the same 10 compounds plus one new 
compound X. 
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Subsequently we can introduce compounds solely characterized by QSAR derived data in order to 
give this new compound, X, an identity, e.g., in an attempt to elucidate the environmental impact of X. 
Adopting the above discussed 10 compounds and the corresponding Hasse diagram (Figure 1A) we 
then introduced the compound X. The revised Hasse diagram, now including 11 compounds is 
visualized in Figure 1B. It is immediately disclosed that compound X has now obtained an identity in 
comparison to the originally well-characterized compounds, as it is evaluated as less environmentally 
harmful than compounds 4 and 7, but more harmful than compound 10. Thus, through the partial order 
ranking the compound, X, has obtained an identity in the scenario with regard to its potential 
environmental impact. 

To illustrate the above an example from our current study on the physico-chemical characteristics 
of OP compounds with special emphasis on chemical warfare nerve agents as the G-agents, like 
Tabun, Sarin and Soman, and V-agents, like VX, shall be used [4,5]. In the present study we shall 
focus on the aqueous persistence of OP insecticides and know and potential nerve agents as expressed 
through the solubility (Sol), the biodegradation potential (BDP) and the Henry’s Law Constants 
(HLC), the latter being derived based on the EPI values as given by HenryWin [6]. 

As mentioned the EPI Suite [6] has been the primary tool for QSAR modeling, the single EPI 
generated values for log Sol, log KOW, log VP and log HLC being further treated to generate new linear 
“noise-deficient” QSAR models, cf. eqn. 1 [4].  

As an example the new ‘noise-deficient’ QSAR model for log HLC is depicted in Figure 2, the 
corresponding model being expressed through eqn. 5 [4]. 

log HLC = 0.946×log HLCEPI – 1.168; r2 = 0.636      (5) 
 

Figure 2.  Visualization of the EPI-based modified QSAR modeling of 
log HLC based on 49 OP insecticides 

The ‘noise-deficient’ QSAR for the solubility was derived analogously, the resulting model being 
described through eqn. 6 [4]. 

log Sol  = 0.983×log Sol(EPI) + 0.625; n = 64, r2 = 0.830     (6) 
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The generated end-point are subsequently used to generate partial order rankings of the the 65 OP 
insecticides together with the 16 known potential nerve agents taking two or more descriptors 
simultaneously into account. Thus, as in total 81 compounds are included in the subsequent ranking 
procedure, the resulting Hasse diagrams may seem somewhat confusing. Figure 3 depicts the Hasse 
diagram disclosing the mutual ranking of the compounds due to their aqueous persistence, i.e., 
bringing simultaneously the solubility (log Sol), the biodegradation potential for ultimate 
biodegradation (BDP3) and Henry’s Law Constant (log HLC) into play. 

Figure 3. Hasse diagram displaying the aqueous persistence of the 65 OP 
insecticides (white/red) and 16 nerve agent (yellow/blue), The 
numbers corresponds to the numbering of the OP insecticides 
in the FADINAP database [7] 

 
From the above figure it can be seen that the nerve agent VX is located at the same level as the 

compounds 61 (Anilofos), 71 (Azinphos methyl), 194 (Chlorfenvinphos), 217 (Chlorpyriphos methyl), 
296 (Dialifos), 319 (Dicrotophos), 372 (Ditalimfos), 705 (Monocrotophos), 795 (Phosalone), 798 
(Phosmet), 799 (Phosphamidon) and 869 (Pyraclofos), in addition to the Russian version of VX (RVX) 
and the potential nerve agent AmMe (Amiton methyl). 

A priori the location of the compounds on the same level in the Hasse diagram suggests these 
compounds to be close in their overall characteristics based on the set of descriptors used, i.e. 
solubility, biodegradation potential and Henry’s Law Constant. However, a further analysis appears to 
be necessary in order eventually to disclose how close these compounds actually are. For this analysis 
the concept of average rank [4,5,22,23] was adopted. Thus, it is assumed that if the average ranks, 
Rkav, of two compounds are close, the two compounds will on an average basis display similar 
characteristics as being determined by the set of descriptors applied. In Table 1 the average ranks for 
the above-mentioned OPs are given together with minimum acute oral toxicity and acute percutaneous 
toxicity, respectively, in both cases for rats [7]. 
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Table 1. Average ranks for the aqueous persistence as determined by the 
solubility, the biodegradation potential and the Henry’s Law 
Constants for a series of OP insecticides and VX (the compound ID 
refers to the FADINAP database, cf. the above text; na: not 
available) 

Compound 
Average Rank 

Rkav 
Acute Oral 

Toxicity (mg/kg) 
Acute Percutaneous 

Toxicity (mg/kg) 
Anilofos 20.5 472 >2000 
Azinphos methyl 25.6 4 220 
Chlorfenvinphos 9.6 24 31 
Chlorpyriphos methyl 18.2 1630 >3700 
Dialifos 41 5 na 
Dicrotophos 9.1 17 110 
Ditalimfos 19.3 5660 >2000 
Monocrotophos 10.3 20 112 
Phosalone 35.1 135 >1500 
Phosmet 21.9 160 na 
Phosphamidon 6.2 17.9 374 
Pyraclofos 18.9 237 >2000 
VX 5.3 0.088 0.1 

It is immediately seen that although the compounds were placed on the same level in the Hasse 
diagram, only through the analysis of average linear rank the true identity of the single compounds are 
disclosed. Thus, in the present case it is obvious that VX (Rkav = 5.3) that in the present context is the 
unknown compound achieves an identity that can be compared to Phosphamidon (Rkav = 6.2) as the 
closest counterpart. Thus, with regard to aqueous persistence, the above combined QSAR and partial 
order ranking analysis indicates that VX and Phosphamidon will display close to identical behavior. 
This further means that Phosphamidon, within the present set of compounds included in the 
investigation, appears as the optimal substitute for VX in experimental studies where aqueous 
persistence is a crucial parameter. It is noted that the acute oral toxicity associated with Phosphamidon 
is approximately 200 times lower than that of VX and in the case of acute percutaneous toxicity, 
Phosphamidon appears to be nearly 4000 times less toxic than VX. 

 
Conclusions 

The present study has demonstrated how ‘unknown’ compounds may obtain an identity by 
comparing to structurally related, experimentally well-characterized structurally similar compounds. 
The identity can be established by a close interplay between so-called “noise-deficient” QSARs, in the 
present study generated using the EPI Suite as the modeling onset. Subsequently, the generated 
physico-chemical end-points are used as descriptors in a partial order based ranking and the 
subsequent analysis of the average linear rank. It is suggested that experimentally well-characterized 
compounds may serve as substitutes for highly toxic compounds, such as the nerve agent in 
experimental studies without exhibiting the same extreme toxicity, however from an overall viewpoint 
exhibit analogous environmental characteristics. 
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