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Abstract: Volatile organic compounds (VOCs) emitted from materials during degradation 
can be a valuable source of information. In this work, the emissions of furfural and acetic 
acid from cellulose were studied using solid-phase micro-extraction (SPME) in 
combination with gas chromatography-mass spectrometry. Two sampling techniques were 
employed: static headspace sampling using SPME for 1 h at 40 oC after 18-h sample 
preparation at 80 oC in a closed glass vial, and contact SPME in a stack of paper (or a 
book). While a number of VOCs are emitted from paper under conditions of natural or 
accelerated degradation, two compounds were confirmed to be of particular diagnostic 
value: acetic acid and furfural. The emissions of furfural are shown to correlate with pH of 
the cellulosic environment. Since pH is one of the most important parameters regarding 
durability of this material, the developed method could be used for non-destructive 
evaluation of historical paper. 

Keywords: gas chromatography-mass spectrometry, SPME, pH, volatile organic 
compounds, paper, analysis. 
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1. Introduction 

The analysis of historical objects is often difficult due to restricted sampling. The value of historical 
substance and its integrity is rarely outweighed by the information we gain through destructive 
sampling and subsequent chemical analysis. In the analysis of paper, we are often interested in the 
parameter, which is crucial for its durability, i.e. pH [1]. The degradation pathway and the rate of chain 
scission depend on this parameter: in an acidic environment, cellulose degrades according to acid-
catalysed hydrolysis, while in a moderately alkaline environment, it degrades through autoxidation. 
The latter process is much slower and the lifetime of traditionally produced moderately alkaline paper 
(produced prior to ~1850) is thought to be several millennia. This is in a stark contrast with acidic 
paper produced between 1850 and 1990: some documents from this period are not expected to survive 
another century. The catastrophic circumstance is that it is estimated that more than 70% of documents 
in Western libraries are acidic [2]. 

This is why the determination of acidity in historical paper is a major analytical task [3]. Most of 
the techniques presently available are based on traditional pH sensors, such as flat surface pH 
electrode. Unfortunately, the material surface needs to be wetted for the purpose, which is 
unacceptable for valuable objects. Micro-pH sensors have been developed, with which only a few 
micrograms of fibres are analysed since micro-sampling is occasionally permitted [4]. 

There is a source of information which has been largely overlooked in development of analytical 
methods for cultural heritage: emissions of volatile organic compounds (VOCs). Ever since Shafizadeh 
had summarised his pioneering work on pyrolysis of biomass in 1982 [5], it has been known that 
VOCs are information-rich: using HPLC and IEC with cryo-trap sampling differences were shown in 
degradation pathways of paper in different reaction conditions [6]. Following the advent of solid-phase 
micro-extraction (SPME) [7-9], the use of this technique was recently explored also for 
characterisation of paper [10,11] and selection of the appropriate fibre material and different sampling 
techniques were studied. It was found out that the DVB/CAR/PDMS SPME fibre was the most 
appropriate for extraction of the variety of VOCs emitted from paper. Contact sampling was carried 
out for 15 days at room temperature and a wide array of volatiles was identified. The concept of 
contact SPME was developed for a variety of purposes, including studies of emissions from live 
insects [12]. 

The presence of VOCs, especially acetic acid, formic acid and formaldehyde in museum 
environments can have corrosive effects on a variety of materials. SPME in combination with GC-MS 
has been proposed as the method of choice for such analyses [13]. While paper is a source of VOCs, it 
is also a potent adsorbent [14] and during quantitative work this effect has to be taken into account. 

It was our primary interest to relate the information on VOC emission, which can be obtained using 
contact-SPME sampling with chemical information on the emitting material. VOCs can be produced in 
a variety of cellulose degradation reactions. It is known that low-MW organic acids form during end-
wise degradation of polysaccharide chains, especially acetic and formic acid and similarly, furfural is a 
well-known product of acid-catalysed hydrolysis of cellulose [15]. It might be expected that during 
natural ageing, these products accumulate in a book and are emitted only slowly [16]. Thus, the 
degradation pathway may influence the VOC profile of a degrading paper to an appreciable extent. 
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In this paper, we used two SPME techniques: static headspace sampling at an elevated temperature 
and well-defined conditions, and contact sampling at room conditions. The extracted VOCs were 
analysed using GC-MS and the relative abundances were compared with paper pH. It turned out that 
contact SPME can be used to estimate the pH of paper in a non-destructive manner. 

2. Experimental Section 

2.1. Samples 

A description of papers and pulp samples used in the study are given in Table 1, along with the type 
of raw material used in paper production, determined according to SCAN-G3:90 and SCAN-G4:90 
standard procedures. In addition to these real samples, Whatman filter paper no. 1 (Maidstone) was 
used as a model paper. It contains purified cotton linters with an addition of bleached softwood pulp. 
The samples were impregnated with phosphate buffers (0.1 mol L-1) of pH 5, 6, 7, 8, 9 and 10, and 
dried.  

2.2. pH measurement 

For determination of pH of real and model samples, the methodology of cold extraction taking into 
account the role of atmospheric CO2 was used [3]. Following the extraction, pH of extracts was 
measured. The typical uncertainty of pH determination using this technique was <0.3 pH unit. 

Table 1. Samples of paper and pulps. Where available, the source and date are provided. 

Sample Description Composition pH 
1 Book, 1938 100% sulphite softwood pulp 4.9 
2 Book, 1902 50% groundwood, 50% sulphite softwood pulp 5.0 
3 Book, 1874 50% groundwood, 50% sulphite softwood pulp 4.9 
4 Book, 1957 60% groundwood, 40% sulphite softwood pulp 5.2 
5 Book, 1940  70% groundwood, 30% sulphite softwood pulp 5.1 
6 Book, 1984 50% bleached hardwood kraft pulp, 50% 

bleached sulphite softwood pulp 5.3 
7 Book, 1962 20% bleached hardwood kraft pulp, 80% 

bleached sulphite softwood pulp  7.5 
8 Book, 1870 70% cotton pulp, 30% annuals (alkaline wheat 

straw) 4.7 
9 Book, 1922 70% groundwood, 30% sulphite pulp 4.1 
10 Book, 2002 70% bleached hardwood kraft pulp, 30% 

bleached sulphate softwood pulp. 8.8 
11 Book, 1951 50% groundwood, 50% sulphite pulp 5.2 
12 Book, 1951 60% groundwood, 40% sulphite pulp 5.3 
13 Book, 1930 60% groundwood, 40% sulphite pulp 4.7 
14 Book, 1960 50% groundwood, 50% sulphite softwood pulp 3.8 
15 Book, 1990 75% groundwood, 25% bleached sulphite 

softwood pulp 5.1 
16 Book, 1986 50% groundwood, 50% kraft pulp 

(softwood/hardwood = 1/1) 5.2 
17 Newspaper, 2003 60% groundwood , 40% recycled fibres 8.3 
18 Filter paper Whatman No. 1 (Maidstone,

UK), 2001 
90% cotton, 10% bleached softwood pulp 

6.4 
19 Bleached softwood sulphate pulp (Pöls,

Austria), 2001 
 

6.8 
20 Cotton pulp (Radeče, Slovenia), 2001 100% cotton 8.1 
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21 sample 18, impregnated with Ca(HCO3)2  8.0 
22 sample 19, impregnated with Ca(HCO3)2  8.3 
23 sample 20, impregnated with Ca(HCO3)2  8.1 
24 sample 18, impregnated with Mg(HCO3)2  9.3 
25 sample 19, impregnated with Mg(HCO3)2  9.3 
26 sample 20, impregnated with Mg(HCO3)2  9.2 

2.3. Solid-phase micro-extraction (SPME) 

For sampling, SPME fibres (Supelco, Bellefonte) with DVB/CAR/PDMS stationary phase, 
thickness 50/30 μm were used. Before each sampling, the fibre was pre-conditioned at 230 oC for 30 
min.  

2.4. Static headspace sampling (SHS) 

For SHS-SPME sample preparation procedure, approximately 100 mg of paper was placed in a 
closed 20-mL vial and thermostated for 18 h at 80 oC. After closed vial was cool down to 40 oC in 5 
minutes. During actual sampling, the pre-conditioned SPME fibre was then placed in the vial for 1 h at 
40 oC. 

During the 18-h sample preparation procedure at 80 oC, degradation of the sample leads to 
formation of VOCs, the determination of which follows in the subsequent step. 

2.5. Contact sampling (CS) 

The pre-conditioned SPME fibre was inserted into the paper stack (or a book) and the VOCs were 
extracted for 24 h at room temperature (22 oC). During sampling, the paper stack was wrapped into 
aluminium foil.  

2.6. Instrumentation 

A Hewlett-Packard 5890 series II gas chromatograph, coupled to a Hewlett-Packard 6890 
quadrupole mass spectrometer (Palo Alto) was used. Manual splitless injection was used at 230 oC. A 
60-m VOCOL column, I.D. 0.25 mm and stationary phase thickness 1,5 μm was used (Supelco, 
Bellefonte). The mobile phase used was helium (99.999%, He 5,0, Messer, Frankfurt, Germany) at a 
flow of 1 mL min-1. The following temperature program was used after injection: 2 min at 50 oC, then 
heating to 210 oC at the rate of 10.0 oC min-1, after which the temperature was kept constant for 
30 min. 

Ionisation was performed using standard EI mode using 70 eV at 170 oC. The interface was heated 
to 280 oC. The detection was initially performed using total ion current, and after the identification of 
the most informative paper degradation products, selected-ion monitoring was used (m/z 60 for acetic 
acid and m/z 95 for furfural) for quantitative determinations. 

The results were comparatively assessed, i.e. not attempt was made at quantification of emissions, 
as this was not necessary. Instead, we comparatively evaluated the results in terms of peak areas for 
acetic acid and furfural at constant conditions of static sampling, which was considered as the most 
suitable sampling strategy for the purpose. For quantification of emissions during degradation, 
dynamic sampling would have to be used. However, this was not the purpose of our study. 
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3. Results and Discussion 

Two modes of SPME sampling were tested: static headspace sampling (SHS) after a certain period 
of annealing the sample at 80 oC and contact sampling (CS). For SHS, 100 mg of sample have to be 
available for the analysis, while CS is non-destructive. 

3.1. Static Headspace Sampling 

Using this methodology, the sample (paper, pulp or cellulosic) is inserted into a glass vial, which is 
then closed and thermostated at 80 oC for 18 h. The mass of sample, temperature and duration of this 
sample preparation procedure were optimised in order to obtain appropriate signal-to-noise (S/N) 
ratios for compounds of interest and thus well repeatable results. For this purpose, sample no. 14 was 
chosen randomly. The sample size may vary, although it has to be taken into account that smaller 
samples lead to less emitted VOCs and as a consequence, less reliable results (Figure 1). With the 
proposed procedure, the typical uncertainty of determination of chromatographic peak areas was less 
than 10%, which was considered satisfactory. 

 

 

Figure 1. Comparison of chromatographic peak areas for acetic acid and furfural emitted by sample 
no. 14 in a glass vial at 80 oC in 18 h. Conditions of extraction using SPME fibre: 40 oC, 1 h. The 

intervals denote standard deviation of triplicate experiments. 
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Figure 2. Comparison of chromatographic peak areas for acetic acid and furfural emitted by sample 
no. 14 in a glass vial at different conditions. Conditions of extraction using SPME fibre: 40 oC, 1 h. 

The intervals denote standard deviation of triplicate experiments. 

A certain period of time is needed for the paper sample to equilibrate with the surrounding 
atmosphere. A prolonged period of heating as used in the proposed procedure leads to accelerated 
degradation of sample and as a consequence, it leads to increased emission of volatiles. This procedure 
of sample pre-treatment is important, as we may assume that the emissions from sample predominantly 
mirror the degradation, which occurred during the 18-h heating period and not during previous natural 
degradation. Thus, better reproducibility may be expected. Certainly, this procedure is not suitable for 
valuable objects. 

As can be seen in Figure 2, release of acetic acid is almost independent of the temperature during 
the sample preparation (degradation) phase, and an increased content is only determined at 250 oC. 
The detected emissions of furfural increase considerably with temperature. Although at higher 
temperatures we detect more degradation products, leakage of VOCs from vials needs to be taken into 
account. In addition, the degradation of paper at temperatures >100 oC is likely to be less 
representative of the degradation observed at <100 oC, where water undoubtedly plays an important 
role and the conditions more closely resemble those of natural ageing.  

Optimisation of this step is thus not possible in view of production of VOCs. We thus decided for 
the most reasonable procedure, both from the viewpoint of duration and from the aspect of degradation 
reactions we are interested in (i.e. temperature). Thus, the conditions of 80 oC for 18 h were finally 
chosen. In view of the temperature, the experimental conditions also reflect the ISO 5630-3:1996 
standard on accelerated degradation of paper. 

The fact that the content of emitted VOCs in a vial reflects degradation during the 18-h sample 
preparation period is important in comparative studies of freshly prepared samples made of filter 
paper, impregnated with phosphate buffer solutions of various pH (Figure 3). The results clearly show 
that the area of the peak representing acetic acid does not vary with pH in the observed pH range, 
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while that of furfural does. In fact, a satisfactory correlation between furfural peak area and pH has 
been obtained. 

 

Figure 3. Comparison of chromatographic peak areas for acetic acid and furfural emitted by cellulosic 
samples (Whatman filter paper no.1) impregnated with different phosphate buffers after an 18-h 

annealing period in a glass vial and equilibrium pH of the same samples. Conditions of extraction 
using SPME fibre: 40 oC, 1 h. Typical relative standard deviation in determination of log(A) was <5%. 

It is of interest to see that the emission of acetic acid is almost independent of the sample pH – this 
must be a consequence of not only the degradation chemistry but also of the fact that above pH 5 
acetic acid exists mainly in the form of acetate. Since acetate readily absorbs at pH above 5 emissions 
of volatile acetic acid will be expected only from a highly acidic sample (pH < 4).  

Furfural is a neutral molecule and its volatility is not affected by sample pH. As seen from Fig. 3 
emission of furfural seems to be inversely proportional to the pH of cellulosic sample. This indicates 
that production of furfural is accelerated by acid hydrolysis of polysaccharides in cellulosic materials. 
Correlation between pH and emission of furfural from paper can be therefore exploited for non-
destructive estimation of paper pH as well as for the indication of cellulose degradation via the acid-
catalysed mechanism.  

Using real samples (Table 1), a satisfactory correlation between furfural emission and sample pH 
was obtained (Figure 4). This is remarkable, considering the wide variety of paper samples used, 
especially in view of their composition – from cotton, containing almost pure cellulose to groundwood, 
containing up to ~50% lignin. We attempted to normalise the peak area for furfural against the peak 
area of acetic acid, however, no improvement in the quality of correlation was obtained. This may be 
understandable, as while furfural is predominantly a degradation product of carbohydrates, acetic acid 
may form also during degradation of other paper components (e.g. lignin). 

The methodology allows for estimation of paper sample pH without an addition of water, which is 
needed for pH measurements using electrochemical techniques. This is important in cases, where 
sample wetting interferes with sample chemistry. However, as stressed above, the destructive sampling 
procedure prevents the methodology to be used for historical papers. 
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Figure 4. Comparison of chromatographic peak areas for furfural emitted by paper samples (Table 1) 
after an 18-h annealing period in a glass vial and equilibrium pH of the same samples. Conditions of 

extraction using SPME fibre: 40 oC, 1 h. Error bars represent typical uncertainties. 

3.2. Contact sampling 

Using the contact sampling approach, VOCs are extracted from samples, which underwent natural 
ageing, i.e. no sample preparation is needed. The sample should be in direct contact with the SPME 
fibre for 24 h. Since furfural is a relatively non-volatile compound (boiling point 162 oC), it does not 
readily migrate from paper and it may thus accumulate with time. On the other hand, acetic acid is 
known to migrate out of paper stacks [10]. 

The extracted amount of furfural during this procedure was considerably lower than in SHS-SPME, 
which was reflected in a lower S/N ratio and consequently in a less convincing correlation (Figure 5). 
The results demonstrate that, given the high uncertainty, this non-destructive approach could be used 
only for an estimation of pH of historical paper. 

 
Figure 5. Comparison of chromatographic peak areas for furfural emitted by paper samples (Table 1) 

during contact sampling and equilibrium pH of the same samples. Error bars represent typical 
uncertainties. 
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4. Conclusions 

We developed a non-destructive approach for estimation of pH of historical paper using solid-phase 
micro-extraction and gas-chromatographic analysis with mass-spectrometric detection. The principle is 
based on semi-quantitative determination of emissions of furfural from paper during degradation. 
Furfural production namely depends on the degradation pathway and this in turn depends on sample 
pH. Two possibilities were explored: 

⎯ static headspace sampling, which is destructive and requires the sample (~100 mg) to be 
heated at 80 oC for 18 h in a glass vial. After this sample preparation procedure, the VOCs 
are extracted using SPME, 

⎯ contact sampling, which is a non-destructive procedure and requires the SPME fibre to be 
inserted into a paper stack for 24 h after which the GC-MS analysis is performed. 

Despite the uncertainty in determination using the described method, the approach is advantageous 
over traditional wet techniques of determination of pH of paper due to its non-destructive character. 
The innovative approach of using emissions of VOCs from materials as source of information not only 
on material identity but also on its quality deserves further attention.  
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