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Abstract: The design of fractional order-holds (FROH) of correcting gains β  [ ]1,1−∈   
(potentially and possibly including zero-order-holds, ZOH with β=0, and first-order-holds, 
FROH with β=1) is discussed related to achieving output deviations being close with 
respect to its sampled values. A squared error time- integral between the current output and 
its sampled values is minimized to yield the appropriate correcting gain of the FROH in an 
analytic way.   
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1. Introduction  

    It is very common to obviate the continuous- time viewpoint when dealing with discrete-time or 
digital systems. However, in a wide class of practical problems, discrete-time systems are obtained by 
the use of sampling and hold devices which operate on continuous signals in order to facilitate the 
subsequent technological treatment of signals such as data storage and transmission. Another 
advantage is that discrete-time controllers are easier to implement while they are much more robust 
than continuous-time controllers. The implementation of discrete-time models is directly related to the 
sensor technology. However, it is highly suitable that the outputs of the discrete –time system be as 
close as possible to those of their continuous- time counterparts in problems where discretization is a 
technical tool to synthesize controllers  or to transmit digitalized data . Another objective of interest is 
to achieve inter-sample outputs being as close as possible to their values at sampling instants. This 
design objective allows keeping the ripple deviations within small admissible levels in problems where 
the tracking performances are analyzed from a discrete-time point of view, i.e. at sampling instants, 
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while some components are of a continuous- time nature. A typical situation within this class is the use 
of discrete-time controllers for continuous-time industrial plants. It is well- known that properties like 
positive realness of important usefulness in Circuit Theory and Hypertstability issues are often lost 
when discretizing a system 21− . However, other properties like, for instance, stability degree of unstable 
discrete- zeros may be improved , and even achieved,  by using appropriate discretization techniques 
as, for instance, multirate sampling with fast input sampling 9,4,3 . The current technology of sensors is 
very linked to sampling techniques. For instance, non-periodic sampling may improve the efficiency of 
sampled data processing 75− . This strategy includes both selection of samples at certain sampling 
instants and choice of transmission or blocking of certain data, what in fact relies directly  on non-
periodic sampling as well. On the other hand,  the choice of the sampling rates is important in many 
applications 8 .  A very close problem to the choice of the sampling rate is the choice of the sampling 
and hold device used for discretization. The underlying philosophy is that the choice of the gain of 
such a device is a degree of freedom which may be used to improve the discretization efficiency as an 
alternative to the choice of the sampling period or the sequence of sampling rates. The analysis is 
performed by using a quadratic loss function which minimizes the errors within the inter-sample 
period. 

2. Results and Discussion   

2.1. Continuous-Time Plant 

     Consider the linear time-invariant single-input single-output plant: 
 

( ) ( ) ( )tubtxAtx +=   ;   ( ) ( )txcty T=                                                                           (1) 
 
where  ( ) nRtx ∈ , ( ) Rty ∈ , ( ) Rtu ∈  are the state vector, and scalar input and output,  respectively, 
and nxnRA∈ ; nRc,b ∈ . A fractional order -hold generates an input of the form: 
 
u k T+ τ( )=u k + β

T
˜ u k −1 τ  ;   [ ]21 ,ββ∈β  ;  1kk1k uuu~ −− −=  ;  ∀ [ )T,0∈τ  

 
with ( )Tkuu k =  is the k- th sample of the input with sampling period T. Usually, 112 =β−=β . If β=0 
or β=1 the FROH is a ZOH or a FOH, respectively. Fractional-order-holds have been studied  related 
to the improvement of the stability of  the discrete plant zeros  which is of interest in problems like 
pole-placement or model-matching controller synthesis since the reference model might be designed 
with more relaxed ´a priori´ constraints on  the need of include prefixed plant  unstable zeros 41− .  In 
this paper, we discuss the choice of fractional order-holds as a way to improve the deviations of the 
inter-sample reconstructed output signals compared to their sampled values compared to the use of 
standard zero-order and first-order-holds.  
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2.2. Inter-Sample Description 

     Assume that (1) is discretized with a sampling period T so that the state evolution (1) becomes for 
any [ )T,0∈τ : 
 

( ) ( ) ( )τβ++τ+=τ+ −
−

1k
1

k u~TubkTxAkTx  ;   [ )T,0∈τ                                              (2) 

 
what  leads to a solution 
   

( ) ( ) ( ) ( ) 1k
´1

kk u~TuxTkx −
− τΓβ+τΓ+τΦ=τ+     [ )T,0∈τ                                       (3) 

 
where  
 

( ) τ=τΦ Ae   ;  ( ) ( ) ´´

0
db ττ−τΦ=τΓ ∫

τ
  ;   ( ) ( ) ´´´

0
´ db τττ−τΦ=τΓ ∫ τ                  (4) 

for all [ )T,0∈τ . One gets from  (3) by using the Leibnitz´s differentiation rule under the integral 
symbol in the open set ( )( )T1k,Tk +  and using (4): 
 

( ) ( ) ( )( ) ( )( ) 1k
´1

kk u~bATubAxAkTx −
− τ+τΓβ++τΓ+τΦ=τ+                           (5) 

 
since  
  

( ) ( )τΦ=τΦ A ;   ( ) ( )τΓ+=τΓ Ab ;     ( ) ( )τΓ+τ=τΓ ´Ab´  
 
Now, taking time-derivatives in (5) with respect to time in (0, T) via (3) yields: 
 

( ) ( ) ( )( ) ( )( )[ ] 1k
´1

kk
2 u~bbAATubAAxAkTx −

− +τ+τΓβ++τΓ+τΦ=τ+          (6) 

 
2.3. Approximate Output Description of the Inter- Sample  Behavior 
 
      For ( )( )T1,0 ρ−∈τ , first and second-order Taylor series approximations about 
, ( ) ( )( )T1k,TkTkt +∈ρ+=  using the output equation of (1) and (5)-(6) yield: 
 

( )( ) ( )( ) ( )( ) ( )( )
2

TkyTkyTkyTky
2τ

ρ+α+τρ++ρ+≅τ+ρ+                                (7.a) 

                             ( )[ ] ( ) ( )βτρδ+τρσ+ρ+= ,,Tky kk                                                   (7.b) 
 
for ( )( )T1,0 ρ−∈τ  with  0=α  for a first-order approximation and 1=α  for a second-order one,  
where  
 



Sensors 2007, 7                            
 

 

3149

( ) ( ) ( )( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧

+ρΓ+ρΦ⎟
⎠
⎞

⎜
⎝
⎛ τ

α+=τρσ kk
T

k ubTAxTA
2

AIc,                                   (8.a) 

( ) ( )[ ] 1k
´T1

k u~
2

bTbTA
2

AIcT, −
−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ τ

α+ρ+ρΓ⎟
⎠
⎞

⎜
⎝
⎛ τ

α+τ=τρδ                               (8.b) 

 
with I being the n-th identity matrix. Eqs. 8 are obtained after substituting (5)-(6) into (7.a), by using 
the output equation (1) and then comparing the expressions (7.a)-(7.b) to make them identical.  The 
effect of the parameter ρ  and its usefulness will become relevant in the next section to evaluate the 
inter-sample performance related to the correcting gains either for the whole inter-sample time 
intervals or for only one portion of them which may be considered relevant by the designer depending 
on the application. If the designer knows that a subinterval of the inter-sample interval is not relevant 
because the output deviation is negligible with respect to its previously sampled value, then such a 
subinterval could be removed from the loss function by appropriately selecting the parameter ρ . 
 
2.4. Choice of  β  for Minimal Output Deviations In–Between Samples 
 
     In this section, a strategy is used to achieve closeness in-between of the output signal at sampling 
instants and its sampled values at sampling instants by the choice of the fractional order-hold 
correcting gain. The main objective of the design is to minimize the ripple effects in-between 
consecutive samples. Since first or second- order approximations are used to calculate approximately 
the output in-between samples, the procedure can be considered as a suboptimization one with 
associate small or moderate computational cost. For that purpose, consider the inter-sample-output 
deviation performance function: 
 

( ) ( )[ ] ( )[ ]( ) ( ) ( )( ) τταρδβ+ταρσ≅τρ+−τ+ρ+=βαρ ∫∫ ρρ d,,,,dTkyTky,T,,J 2T
T kk

2T
Tkk  

                ( ) ( ) ( )( ) τταρδσβ+ταρδβ+ταρσ= ∫ ρ d,,2,,,,T
T kkk

2
k

2
k

2
k

                                  (9) 

 
which minimizes the inter-sample deviation (in an approximated quadratic error integral  suboptimal 
sense) in the interval ( ) ( )[ ]T1k,Tk +ρ+  for a design choice of the −ρ parameter in [ ]1,0 . The sub-
optimization consists of a search for a global minimum, subject to interval- type constraints, which 
supplies the correcting gain of the sampling and hold device as a result. Such a performance function 
reaches a minimum from direct evaluation of the derivative with respect to β at  
 

( )
( )

( )
( )∫

∫

ρ α

ρ α
α ττβραδ

ττβρασ
−=

ραδ
ρασ

−=β T
T kk

T
T kk

k

k
k d,,,

d,,,
T,,
T,,   

          ( )( ) ( )( )RR ∈β=βρα=∈ββρα= kkkkkk :0,T,,JArg:,T,,JMinArg                       (10) 

 
where  

( ) ( ) ( ) ( ) ( )( ) kk
T

k ubTAxTA
4

AT1IcT1T,,
⎭
⎬
⎫

⎩
⎨
⎧

+ρΓ+ρΦ⎥⎦
⎤

⎢⎣
⎡ ρ+α

+ρ−=αρσ                   (11) 
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( ) ( ) ( ) ( )( ) ( )
1k

2323
2

T

k u~
3

bT1bTT´A
3

AT1I1
2
cTT,, −

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ ρ−α

+ρ+ρΓ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ρ−α
+ρ−=αρδ  

                                                                                                                                                (12) 
 
Since ( )βαρ ,,J k  is a convex function of β for any real ( )1,0∈ρ , a constrained minimization of 

( )βαρ ,,J k  on [ ]21 , ββ is performed  by an adjustable sample-dependent correcting gain as follows: 

 

[ ]⎪
⎩

⎪
⎨

⎧

ββ∈ββ
β<ββ
β>ββ

=β

αα

α

α

21kk

1k1

2k2

k

,if
if
if

                                                                                            (13) 

 
Two modifications of this rule are interesting in practice in order as follows: 
 
Modification 1. The correcting gains are averaged over a set of consecutive samples so that: 

kαβ is replaced with its average ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β

−
=β ∑

+

+=
α

1i

i

k

1kj
j

i
kav kk

1 for [ )1ii k,1kk ++∈  for an ordered set of 

marked samples { }ik   which may be chosen according to the transient performance characteristics. 
Then  (13), subject to (10)-(12),  is applied by replacing kavk β→β α . With this choice, the correcting 

gain is still modified at each sample but less abruptly than in the basic rule. A slight modification is as 
follows. Choose a sequence of strictly ordered marked samples { }N

1ik  (N being very large 
approximating infinity). This marked sequence may be predefined or online chosen according to the 
transient performance characteristics being finite or, even, selected with constant differences 

( )i1i kk −+  for any testing time. Then, replace ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β

−
=β→β ∑

+

+=
α

+
α

1i

i

k

1kj
j

i1i
kavk kk

1  which is constant 

for all [ )1ii k,1kk ++∈ . 

 
Modification 2. The correcting gains are averaged over a set of consecutive samples so that: 

kαβ is replaced with its average ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β=β ∑

=
α

∞→

N

1j
jNav lim

N
1 for all k. Then , (13) is applied with the 

replacement avk β→β α . In practice, the above limit may be replace for a sufficiently large time 
interval taking account of the transient period.  
 
3. Experimental Section 
 
3.1. Example 1 
 
     Consider the linear and time- invariant continuous closed – loop system: 
 

( ) ( )txtx 21 =  ;  ( ) ( ) ( ) ( )( )txt1txtx 122 −+−=   ;  ( ) ( )txty 1=  
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which  corresponds to a  feed-forward plant of transfer function ( )1ss/1 +  under unity negative 
feedback and external unity step reference input 1(t). Such a continuous system is discretized via a 
FROH placed at its plant input with a sampling period T = 0.1 secs.  The optimal fractional order -hold 
correcting gain according to a second-order approximation (i.e. α =1) of the loss performance (9) with 
ρ = 0 is β= -0.4. The two better  averaged positive and negative  values of β over 200 samples leading 
to the two minimal squared inter-sample tracking error (9) are reached  at β=0.51 and β=-0.40, 
respectively, taken as the better averages of the results obtained from (13) over 200 samples. The 
corresponding tracking errors are displayed in Figures 1 below. 
                            

Output (β=0.51) 

Time 
(a) 

Output (β=-0.4) 

 
Time 
(b) 

 
Figure 1. Output inter-sample performance: (a) β =0.51, (b) β =-0.4. 

 
A set of exact losses (9) over the first 100 samples describing a relevant portion of the transient output 
for a set of selected significant values of β is displayed in the tabulated results in Table 1 below:  
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Table 1. Loss performances versus values of the correcting gain β . 
_________________________________________________________________________ 
β   =            0 (ZOH)         -0.2              0.46                0.47               1 (FOH)      
Loss (Eq. 9)  
     =           16.609           25.9165         41.84              94.53             180.282      
_________________________________________________________________________  
β =   -0.25    -0.26      -0.28        -0.30       -0.33       -0.34      -0. 38     -0.40     -0.5         -1 
Loss (Eq. 9)  
   =  26.28    26.96    26.962   1.92339   14.076     7.7730    2.0779    1.92    5.99167 3.32083 
_________________________________________________________________________ 
 
The loss function versus the gain of the fractional order-hold over 100 samples is displayed in Figure 2  
below with notches for the values for 1,0,1−=β : 
 

 
Loss Function 

-1                                   0                1 
β  

Figure 2. Loss values for β  ranging within [ ]1,1− . 
 
On the other hand, the values of the first exact expression (9) over 10000 samples are 305.559 for β= -
0.4 and 409.191 for β = 0.51, respectively. Comparing those results with those of Table 1 over 100 
samples , it turns out that the absolute variations of the loss function  from the correcting gains β= -0.4 
to  β = 0.51 are 99.32 for 100 samples and 103.632 for 10000 samples.  The respective relative 
variations of the exact loss function are 51.73% and 0.34%. The interpretation is that the variations are 
very significant during the transients as the correcting gains (and then the type of FROH) change while 
the variations are small in the steady-state, as expected. Note that a steady-state behavior is attained 
fast due to the plant stability and the fact that a constant reference input is used. It may be claimed that 
if the steady-state is achieved very slowly or a fast changing reference input is used then the variations 
related to used FROH are kept through time. This claim will be confirmed in Example 2 below where a 
quasi- square reference signal is injected to the plant. On the other hand, it might be noticed that, in 
general, neither the widely used zero-order-hold or the first-order-hold are the best options for 
reconstruction of the output in-between sampling instants closely to its sampled values. Note also that 
such a behavior is highly dependent on the chosen correcting fractional order-hold correcting gain. A 
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third point is that the correcting gain might be theoretically be designed as being sampling dependent  
if  the basic  sub- optimization  rule  (13) is implemented  but it can also be chosen constant through  
performing an averaging procedure as given in the example. A final interesting point is that the way of 
designing β is dependent on the property one desires to enhance. For instance, negative values are 
good to achieve stable discrete zeros as the sampling period tends to zero if the system is of relative 
degree at most two. Negative values of the correcting gain (including the ZOH β=0) may be 
appropriate for stabilization of discrete zeros if the sum of all continuous zeros becomes to be 
negative

4,3
. 

 
3.2. Example 2 
 
     A new example is performed to check the transient performances under different holds and 
oscillatory inputs. It is assumed that a continuous-time reference model of transfer function 

( )
60s19s

06sG 2m
++

=  specifies the suited performance. The controlled plant is given by the transfer 

function ( )
60s9.192

02sG
+−

=  of parameters assumed to be unknown. Both plant and reference model 

are discretized under different holds of gains 0=β  (ZOH), 2.0=β and 1=β (FOH) resulting in the 
respective discrete transfer functions ( )zH mβ  and ( )zH β  which incorporate the sampling and hold 

devices in cascade with the corresponding continuous transfer functions. Then, a model-matching 
based discrete adaptive controller is used which consists of a discrete precompensator and a discrete 
feedback compensator which are used to generate the plant input at sampling instants. Both 
compensators are designed such that the closed-loop system transfer function matches that of the 
reference model. The input to the continuous plant during the inter-sample intervals is generated 
according to the reconstruction laws of discretized signals under, in general, fractional sampling and 
hold devices. The initial covariance matrix of the least-squares adaptation algorithm is diagonal with 
all the diagonal entries being identical to 510 . All the initial estimated parameters are fixed to unity, 
the sampling period is taken to be T= 0.08 secs. and the initial conditions of the plant and reference 
model are assumed to be zero so that only the forced responses are evaluated. The reference input to 
the reference model is a almost square nonnegative signal. Such a signal is appropriate to check 
transients because of its fast changing shape. The resulting control scheme is displayed in Figure 3. 
 

Reference
Input

⊗ FROH G(s)( )( )
( )ff

T zH z
R z

=

( )( )
( )fb

S zH z
R z

=

,c ku

ky( )y tku ( )u t+

−

sT
, ( )mH zβ

⊗
+

−

ke
,m ky

 
 

Figure 3. Control scheme. 
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The closed-loop plant outputs for the three tested sampling and hold devices are displayed in Figures 4 
together with the reference signal injected to the reference model. Note that there is an asymptotic 
tracking of the reference output by the plant output as expected with a negligible inter-sample ripple 
deviations, related to their maximum values, for the three sampling and hold devices tested as 
expected. However, the three behaviors are quite distinct during the adaptation transients. The 
fractional order-hold with β =0.2 exhibits the better performance transient behavior, the first-order-
hold exhibits the worst one and the ZOH exhibits an intermediate tracking performance. 
 

Outputs 

 
Time 
(a) 

 
Outputs 

 
Time 
(b) 

 
Outputs 

 
Time 
(c) 

Figures 4. Adaptive transient  performances: (a) β =0, (b) β =0.2, (c) β =1; 
_____  Reference model input,   ------ Reference model output,    …… Plant output. 
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