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Abstract: An important step towards understanding the working principles of the mammalian
hearing sensor is the concept of an active cochlear amplifier. Theoretical arguments and physi-
ological measurements suggest that the active cochlear amplifiers originate from systems close
to a Hopf bifurcation. Efforts to model the mammalian hearing sensor on these grounds have,
however, either had problems in reproducing sufficiently close essential aspects of the biolog-
ical example (Magnasco, M.O. Phys. Rev. Lett. 90, 058101 (2003); Duke, T. & Jülicher, F.
Phys. Rev. Lett. 90, 158101 (2003)), or required complicated spatially coupled differential
equation systems that are unfeasible for transient signals (Kern, A. & Stoop, R. Phys. Rev.
Lett. 91, 128101 (2003)). Here, we demonstrate a simple system of electronically coupled
Hopf amplifiers that not only leads to the desired biological response behavior, but also has
real-time capacity. The obtained electronic Hopf cochlea shares all salient signal processing
features exhibited by the mammalian cochlea and thus provides a simple and efficient design
of an artificial mammalian hearing sensor.
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1. Introduction

Understanding hearing in general and more specifically the mammalian hearing organ, the cochlea,
is a long-standing human endeavour. The first basic step was taken by H.L.F. Helmholtz, who proposed
in 1863 [1] the existence of a one-to-one correspondence between a position along the cochlear duct



Sensors 2007, 7 3288

and a stimulation frequency to which, at the given position, the response is maximal (the tonotopic
principle). Important steps that followed were von Békésy’s discovery of traveling waves along the
basilar membrane (BM) as the carriers of the auditory information (1928 [2]) and Gold’s conjecture of an
active amplification process within the cochlea (1948 [3]). The latter phenomenon was corroborated by
the discovery of otoacoustic emissions (1978 [4]), the autonomous generation of sounds by the cochlea
itself. Subsequent experiments have revealed that the active amplification is located in the outer hair
cells (OHC) attached to the basilar membrane [5, 6]. It has been known for some time that systems close
to bifurcation instabilities can act as small-signal amplifiers [7, 8], where each bifurcation type ads its
own amplification signature.

Physiological measurements have shown that among mammals, the hearing characteristics vary little
[9] and the measurement details [10] imply that the instability responsible for active amplification is of
Hopf type. This led Eguı́luz et al. [11] to propose the use of Hopf-type amplifiers as the basic elements
for cochlear modeling (for a related result, see [12]). They argued that the Hopf nonlinearities could
correctly capture the basic aspects of mammalian hearing: compression of the dynamic range; sharper
tuning for lower intensity sounds, and the generation of combination tones. In turtles and bullfrogs,
cells that are homologous to the mammalian hair cells (see [13]) have already been shown to display
amplification profiles that are characteristic for systems close to a Hopf instability [14].

In the cochlea, pressure variations generated by incoming sounds are transformed into incompressible
and inviscid hydrodynamic waves. As these waves move down the cochlea, they cause small BM dis-
placements [15]. Using x to denote the distance from the stapes along the unrolled cochlea, the system
can be linearly described by a water-surface wave with fluid depth h, density ρ, surface mass density m

and exponentially decreasing transversal stiffness [16]. In this description, using a dispersion relation,
the differential equation ruling the spatial energy distribution e(x) obtains the form [17]

∂e

∂x
=

−1

vG(x, ω)

[
∂vG(x, ω)

∂x
+ d(x, ω)

]
e +

a(x, e, ω)

vG(x, ω)
, (1)

where a(·) the power supplied by the local active amplification which works against the internal viscous
losses d(x, ω) = 4ν k(x, ω)2, ν the kinematic viscosity. vG is the group velocity and k the wave number
of the stimulating wave [18, 19]. Following the biological example, the active amplification results from
an array of Hopf-type power sources aligned along the BM, where each amplifier has its own natural (or:
’characteristic’) frequency ωch(x). Given a forcing frequency ω, the Hopf amplifiers with ωch(x) ≈ ω

are maximally excited at locations xch(ω) < xc(ω), beyond which viscosity leads to a precipitous decay
of the wave amplitude.

The characteristics of the active contribution a are derived from a ωch-rescaled Hopf differential equa-
tion

ż = (µ + j) ωchz− ωch |z|2 z− ωchF(t), z ∈ C, (2)

where j is the imaginary unit. Assuming a 1:1 locking between signal and system, z(t) = Rej(ωt+θ) is the
amplified external periodic input F = Fejωt, ωch is the natural frequency of the oscillation, and µ ∈ R
denotes the Hopf nonlinearity parameter. For F = 0, Eq. (2) describes the generic differential equation
displaying a Hopf bifurcation: For µ < 0, the solution z(t) = 0 is a stable fixed point, whereas for
µ > 0, the fixed-point solution becomes unstable and a stable limit-cycle of the form z(t) =

√
µejωcht
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appears. For time-varying signals F(t) it is convenient to put a handle on the response latency, by
multiplying the damping term ωch |z|2 z by a factor γ > 0. A nonzero forcing F then yields ωchFe−jθ =

(µ + j) ωchR−γωchR
3− jωR. Evaluation of the squared modulus and introducing the variable φ = ω

ωch

results in
F 2 = γ2R6 − 2γµR4 +

[
µ2 + (1− φ)2] R2, (3)

which is easily solved. For µ = 0 and close to resonance (ω = ωch), the response R = F 1/3 emerges,
which forces the gain G = R/F = F−2/3 to increase towards infinity as F approaches zero. For
µ < 0, maintaining ω = ωch, we obtain the response R = −F/µ for weak stimuli F . As F increases,
the term R6 in Eq. (3) can no longer be neglected, and the compressive nonlinear regime is entered
(γR6 ≈ µ2R2 + 2γµR4). The transition point is located at FC(µ) ≈ 0.91(−µ)3/2/γ

1
2 . Therefore,

for weak stimuli F , the response R is almost linear; for moderate stimuli the differential gain of the
system, dR/dF , decreases with increasing stimulus intensity. As we move away from resonance, the
last term of Eq. (3) dominates, leading, as R ≈ F/|1 − φ|, to a linear response, irrespective of the
stimulation strength. For µ > 0, stable limit-cycles emerge. For an intuitive understanding, at a nonzero
stimulation, the Hopf equation (2) can be interpreted as a nonlinear filter characterized by a tunable gain
control (“quality factor”) |µ| and an envelope detector |z|2. As the bandwidth Γ ∼ |µ| for F ≤ FC (and
Γ ∼ γ1/2F 2/3 for F > FC), small |µ|-values act as high Q-factors (sharp resonances).

2. Experimental setup

Electronic sensor design: For stationary inputs simulations of the differential equation (1) provide
results that are close to those from the physiological example, if an appropriate coupling scheme is used
[17]. In the simulation approaches pursued, the optimal coupling scheme however remained elusive to
us. Only when using a simplification of the previously very detailed biologically motivated coupling
schemes, our electronic implementation yielded results of the desired accuracy. The construction of the
device now provides us with a handle to reconsider critically the biophysical basis used for the simulation
approach, and to draw thereof corresponding biophysical conclusions.

In addition to providing suboptimal results, for transient signals our simulations were confronted with
excessive computational demand. This was our main motivation to resort to an electronic implementation
that, while being a simplification of the software model, should take care to preserve the insights gained.
For the design, we decomposed the cochlea into n sections of characteristic frequencies ωsi

, i = 1, . . . , n,
and endowed each one with properties of the passive hydrodynamic behavior and an active Hopf ampli-
fier. Major challenges were to properly connect the passive/active components towards a section, and
the sections towards a cascade representing the entire cochlea. The Hopf part (2) can be approximated
in circuitry by using a combination of integrative summers and multipliers, resistors R and a capitance
C [20]. Using complex notation for the voltages vz = vx + jvy, the Hopf equation reads

v̇z =

( −vµ

mCRµ

+
j

CRω

)
vz − |vz|2vz

2m2CRγ

− vF

CRF

, (4)

where vF denotes the input voltage and vµ the control parameter. The multiplier m is implemented by
means of analog multipliers (vo =

vi0
·vi1

m
in electronic conventions). To map the Hopf system on the
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circuit, the interval of linear response was mapped on the non-saturation regime VCC of the op-amp. We
chose this interval as IF = (0, FC(µ∗)], where µ∗ is a sufficiently negative value of µ where log[FC ]

is essentially constant. For the proper mapping, we write vz = Azz, vF = AFF, vµ = Aµµ. From
equating (4) with (2), we obtain

ż =

( −Aµµ

mCRµ

+
j

CRω

)
z− A2

z|z|2z
2m2CRγ

− AFF

CRF Az

. (5)

The mapping thus requires to use AF ¿ VCC/FC . We chose AF = VCC , and, to obtain a unitary gain,
Az = AF . Aµ could be set arbitrarily, but is naturally chosen as Aµ = −VCC/µ. In order to properly
address situations where µ is changing over an interval Iµ, we replace µ by min(Iµ). Given capacitance
C, the resistor values are calculated from the equivalence between Eq. (2) – modified by the factor γ –
and Eq. (5) as

Rω =
1

Cωch

, Rµ =
−Aµ

mCωch

, RF =
AF

AzCωch

, Rγ =
A2

z

2m2Cγωch

. (6)

The responses generated by Eq. (1) [17] suggest that the passive part can be modeled as a 6th-order
Butterworth circuit. We chose to partition the 6th-order Butterworth filter into three 2nd-order low pass
filters (see Fig. 1). Such a circuit transforms a rescaled input frequency φ̂ = ω

ωs
according to

|Hωs
6 (jω)| =: B6(φ̂) =

∑6
i=0

1

aiφ̂i
= (7)

1

(φ̂2+0.518φ̂+1)
· 1

(φ̂2+
√

2φ̂+1)
· 1

(φ̂2+1.932φ̂+1)
,

where Hωs
6 (jω) is the transfer function of the 6th-order filter with cutoff ωs. The first filter part has a

gain in excess of 1 at the characteristic frequency, leading to an op-amp saturation at large input voltages
and small control values. This problem can be compensated for by changing the order of the 2nd-
order circuits. This does not compromise the amplification of small signals, if, following the biological
example [17, 21], the Hopf amplifier preceeds the Butterworth filter. Putting the Hopf amplifier “in front”
of the passive unit, and coupling the two units by means of a simplified feedforward coupling, avoids
an uncontrollable interaction of the phases of the passive and the active components, a problem that
feedback and open-loop gain amplifications usually struggle with. The corresponding section diagram
is shown in Fig. 1. The cochlea was constructed by connecting sections of logarithmically increasing
center frequencies ωsi

in series. This implementation is different from the one used in our previous
modeling studies [17]. Whereas in the latter the skeleton was provided by passive behavior, to which
active components, coupled over the range of a few OHC, were added, in the present setting we have
an enlarged range of coupling among combined active/passive units. The details of how this leads to
the improved response by the hardware, seen from the biophysical measurements, and what biophysical
consequences this has, will be the subject of a separate study.

In order to build a generic section, it was sufficient to specify the detuning between the passive
frequency ωsi

and the Hopf amplifier frequency, φs(i) := ωsi
/ωchi

< 1, i = 1, . . . , n, where n is
the number of sections. This was our first design parameter. The second design parameter was the
relationship between the characteristic frequencies of subsequent section frequencies

Ψ(i) =
ωsi+1

ωsi

, i = 1, . . . , n− 1. (8)
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Figure 1. Section diagram, consisting of a Hopf amplifier and two 6th-order Butterworth filters. To form
the cochlea, the sections are connected in series.

For the realization of the cochlea reported below, we chose, for simplicity, the two parameters indepen-
dent from the section, as Ψ(i) = Ψ, φs(i) = φs,∀i. For a frequency range to be covered, we used the
second design parameter to determine the number of composing sections and to evaluate the characteris-
tic frequencies. From Eqs. (6), the corresponding electronic components were obtained, which leaves as
the only free parameter the Hopf parameter µ, in the electronic realization expressed by the gain control
vµ. As was outlined above, the Hopf parameter determines both the amplification strength and the tuning
width (smaller |µ|’s lead to larger amplifications combined with sharper tuning widths). We chose an
electronic realization that requires five sections to cover one octave. This choice provides an amplifica-
tion profile close to that of the biophysical measurements, at a minimum number of components. The
circuits were implemented using conventional hardware, obtainable in any electronic store. As a con-
sequence, the supply voltage was chosen at 10 V. The electronic parts used were chosen according to
cost and availability criteria only. A more careful design optimizing the impedances between the sec-
tions would substantially reduce the noise accumulated along the cochlea. Primary investigations have
corroborated the expectation that the cochlea can easily be miniaturized and be cast in microelectronics.
Complex sounds (such as the ’click’ stimulations used) were obtained via a microphone (Sennheiser
E845 with an appropriate pre-amplifier) or via the synthetic waveform generator (Agilent 33220A), fol-
lowed by an analogue Hilbert transform that generated the real and the imaginary components of the
signal. For the active tuning of the µ-parameter array we used the National Instruments 6723 I/O card.

3. Results

In what follows we report on a realization using design parameters φs = 1.05−1 and Ψ = 0.84. This
leads to a range of one octave (say the range from 1480 to 2960 Hz) by means of five components. The
final cochlea prototype constructed embraced 24 sections.

Steady-state signal response: From the constructed electronic device, we measured the amplitude
Amp = |v0| generated in response to varying input frequencies and stimulation strengths (pure-tone
stimulations). The comparison of the measurements after the first, the second, the tenth and the twentieth
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section demonstrates that by passing through the sections, the signal is gradually shaped (see Fig. 2),
where after a few sections, the response already attains its characteristic form, see Fig. 3. Using more
sections in the electronic device shapes the measured frequency response ever closer to the biophysical
measurements (compare with [23], Fig. 1).
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Figure 2. Output modification by the cochlear cascade: Measurements taken after (from left to right)
one, two, ten, twenty sections. µ = −0.2. Lines of constant inputs are 10 dB apart, ranging from −20

dB to −80 dB.

In Fig. 3, the response from four-section cochlea covering the range range from 5920 to 9956 Hz is
taken for two values of the Hopf parameter µ, in order to demonstrate the influence µ has on the ampli-
fication strength. Close to bifurcation, a discretization effect is observed that limits the minimal number
of sections that can be used given a required gain. The strength of the latter is a function of the frequency
distance between adjacent sections (Ψ) and of the resonance widths of the active amplifiers (i.e., of µ).
An array of about 30 sections leads to a hearing sensor that for practical purposes is comparable to the
mammalian hearing organ.

Moreover, in experiments with stimulations by more than one tone, two-tone suppression and combination-
tone generation, as the salient nonlinear phenomena of mammalian hearing [24–27], are reproduced with
great fidelity, see Fig. 4.

Transient signal response: The response to transient, broadband stimulation is of similar quality. In
Fig. 5, the results for click stimulations are displayed. A comparison with the corresponding biophysical
measurements [28] reveals a close match. Also other biophysical experiments with transient signals
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Figure 3. a), b) Steady-state response (upper panels) and gain (lower panels) for Hopf parameters
µ = −0.1,−0.05. Central frequency: 5920 Hz. c) Physiological measurements (adapted from [22], see
also [17]). The emerging double-humped structure in b) is a discretization effect, which vanishes if the
sections are chosen more closely spaced.

reported in [28] are reproduced with ease. In Fig. 6, the instantaneous frequency response is displayed for
different stimulus levels. The measured response reproduces the logarithmic increase towards the steady-
state response near the central frequency (see inset), as well as the fact that the steady-state response is
somewhat higher than the central frequency. Our measurements extend beyond the first wave packet,
which leads at the packet interfaces to systematic outliers of the measured instantaneous frequencies.
Even the phase functions taken from the device match with the ones taken from the biological example,
see Fig. 7. Response phases increasingly lag as the frequency of stimulation increases. As in the
biological example, a shallow slope at low frequencies is observed that turns into a steeper slope towards
and beyond the central frequency.

Another transient signal of interest are low-frequency amplitude modulated sounds. That is because
such signals play a significant role in clinical procedures for the differential diagnosis of sensory hearing
loss. Moreover, such signals may play a major role in speech intelligibility. Also in this case, the
correspondence between the physiological observations and the corresponding response generated by
our electronic device is extremely close, see Fig. 8.

Active tuning towards signals: The least perfect correspondence between the signals delivered by
our device and the physiological example is found in Fig. 5. In the electronic device, the response to
sound stimulations is asymmetric (stronger in the beginning, lesser at the end of the signal), whereas in
the biological example this is almost perfectly symmetrical. This discrepancy, however, can be fixed and
understood by the following arguments. The physiological measurements indicate a response-dependent
value of µ, potentially implemented on the level of hair cells with its channel dynamics (small |µ| at
signal onset, larger values upon increased response). Before the arrival of a strong stimulating sound,
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Figure 4. Salient nonlinear phenomena of hearing: a) Combination-tone, b) two-tone suppression.
Left: electronic cochlea (µ = −0.05, central frequency: 1480 Hz), right: physiological measurements
(adapted from a): [24]; b): [25]). See also [26, 27].

the biological cochlea appears to be tuned for weaker sounds, using small values of the tuning parameter
|µ|. With the arrival of a strong click, the amplification seems to be quickly decreased, and then kept
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Figure 5. Response to broadband transient stimulation (clicks): a) hardware (µ = −0.05, central fre-
quency: 5 kHz), b) biology (chinchilla, central frequency: 5.5 kHz, adapted from [28]).
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Figure 6. Instantaneous frequency response to click stimulation at different stimulus levels (µ = −0.05,
central frequency: 1480 Hz, section 5). The response is close to the biological measurements reported
in [28].
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5). The dependence is similar to the biological measurements reported in [6].

constant. The observed behavior corresponds well to the behavior (latencies) one would expect if the
hair-cells are tuned by means of its efferent connections, monitored by instructions from the auditory
centers.

By closely following the biological example in our design, it is in the nature of the design of our
cochlea that such a dynamical adaption of µ can be implemented with little additional effort. Even more
importantly, on slower time-scales, the auditory neuronal feedback loop might tune µ in order to suppress
unwanted, and to enhance desired, signal components. Theoretical experiments exploiting these features
are successful and raise the expectation that by proceeding on this way, we may substantially reduce the
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Figure 8. Envelope distortions of 100% amplitude-modulated input tones (bold lines: ideal sinusoidal
envelopes). a) electronic Hopf cochlea: Measurement: fch = fsignal = 7040 Hz. Carrier signal fcarrier =

176 Hz (upper) and fcarrier = 704 Hz (lower figure), respectively. b) Chinchilla cochlea, fch = fsignal =

8000 Hz. Carrier signal fcarrier = 200 Hz (upper) and fcarrier = 800 Hz (lower figure), respectively
(adapted from [29]).

cocktail-party problem. Preliminary results demonstrating this effect have already been obtained and
corroborate the effectiveness of this feature.

4. Conclusions

We have demonstrated that the Hopf cochlear amplifier concept together with the cochlear biophysics
thus provides the design of an extremely sensitive and robust hearing sensor, where salient nonlin-
ear signal processing characteristics (compressive nonlinearity, high sensitivity, two-tone suppression,
combination-tone generation) are naturally implemented. The device has all ingredients to serve as a
perfect hearing replacement device (cochlear implant), once we succeed in similarly improving the stim-
ulation electrodes needed for implants in a qualitatively comparable manner. Currently, such an electrode
is being developed in collaboration with EMPA.

This work was supported by the Swiss National Science Foundation SNF (grant 205321-108427 to
R.S.).



Sensors 2007, 7 3297

References

[1] Helmholtz, H.L.F. Die Lehre von den Tonempfindungen als physiologische Grundlage für die The-
orie der Musik (Vieweg, Braunschweig, Germany, 1863).
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