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Abstract: Spectral mixing is a problem inherent to remote sensing data and results in few 
image pixel spectra representing "pure" targets.  Linear spectral mixture analysis is 
designed to address this problem and it assumes that the pixel-to-pixel variability in a 
scene results from varying proportions of spectral endmembers. In this paper we present a 
different endmember-search algorithm called the Successive Projection Algorithm (SPA). 
SPA builds on convex geometry and orthogonal projection common to other endmember 
search algorithms by including a constraint on the spatial adjacency of endmember 
candidate pixels. Consequently it can reduce the susceptibility to outlier pixels and 
generates realistic endmembers.This is demonstrated using two case studies (AVIRIS 
Cuprite cube and Probe-1 imagery for Baffin Island) where image endmembers can be 
validated with ground truth data. The SPA algorithm extracts endmembers from 
hyperspectral data without having to reduce the data dimensionality. It uses the spectral 
angle (alike IEA) and the spatial adjacency of pixels in the image to constrain the selection 
of candidate pixels representing an endmember. We designed SPA based on the 
observation that many targets have spatial continuity (e.g. bedrock lithologies) in imagery 
and thus a spatial constraint would be beneficial in the endmember search. An additional 
product of the SPA is data describing the change of the simplex volume ratio between 
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successive iterations during the endmember extraction. It illustrates the influence of a new 
endmember on the data structure, and provides information on the convergence of the 
algorithm. It can provide a general guideline to constrain the total number of endmembers 
in a search.  

 
Keywords: hyperspectral, spectral unmixing, endmember, simplex 

 
 
1. Introduction 
 

Linear spectral mixture analysis (SMA) is based on the simple assumption that remotely sensed 
spectral measurements are mixed signatures that vary across the scene as the relative proportion of 
endmembers change. It is commonly used for the analysis of hyperspectral data [1-8], but to obtain 
accurate unmixing results the endmembers selected must be representative of surface components that 
occur in relatively pure form [9].  For this reason much literature has focused on the critical step of 
endmember extraction with the aim to determine the “purest” spectral representation of materials 
present in the scene. 

Spectral endmembers can be derived from the imagery (image endmembers) or measurements in 
the laboratory/field (library endmembers). Library endmembers may not always be available, and if 
available, they are not necessarily acquired under the same conditions as airborne or satellite image 
data and may not be good representations of the image components. Thus there are advantages in being 
able to extract endmembers directly from imagery. The selection of image endmembers is typically 
achieved through the implicit (PPI,  pixel purity index [10]) or explicit use of convex geometry [11].   
A simplex is fit to the convex hull of the n-dimensional data cloud and the vertices of the simplex 
define the spectral properties of the endmembers. Based on this concept, a number of algorithms have 
been developed over the past decade to automatically find image endmembers and these include the N-
FINDR [12], iterative error analysis (IEA) [13], vertex component analysis (VCA) [14], MaxD 
(Maximum Distance) [15], Sequential Maximum Angle Convex Cone (SMACC ) [16], iterated 
constrained endmembers (ICE)[17], simplex growing algorithm (SGA) [18], minimum volume 
constrained nonnegative factorization (MVC-NMF) [19] and optical real-time adaptive spectral 
identification system (ORASIS) [20]. While these methods have proven effective under different 
situations, most use one pixel (the most extreme pixel) to represent one endmember, which results in 
the inclusion of outlier pixels (e.g. bad pixels) as endmembers. Indeed Howes et al. (2004) reported 
that convex-based endmember extraction methods were susceptible to outliers since only a single 
spurious pixel can significantly alter the endmember simplex [21]. Outliers may result for example 
from noise or atmospheric effects in the data. 

In this paper we present a different endmember-search algorithm called the Successive Projection 
Algorithm (SPA). SPA builds on the convex geometry endmember search algorithms described above 
by including a constraint on the spatial adjacency of endmember candidate pixels, whereby this 
approach can reduce the susceptibility to outlier pixels and generates realistic endmembers. This is 
demonstrated using two case studies where image endmembers can be validated with ground truth 
data.   The spatial constraint was introduced based on success we have had with  the spatial-spectral 
endmember extraction algorithm (SSEE) that makes use of the spectral and spatial characteristics of 
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image pixels during the search for image endmembers [22]. SSEE operates differently from SPA using 
a roving endmember search window that covers the entire input image and it was designed to find 
similar but distinct endmembers (e.g. spectrally similar but distinct rock units). 

In Section 2, we present the concept of convex geometry and its relevance for endmember selection, 
followed by a summary of current convex-based endmember-search algorithms. In Section 3, we 
describe SPA and its functionality. Section 4 describes the characteristics of the two test datasets 
(AVIRIS Cuprite cube and Probe-1 imagery for Baffin Island) that are used to evaluate the SPA 
algorithm. The experimental results are presented in Section 5, followed by a discussion.  

2. Background  

2.1. Spectral endmembers in convex geometry 

Linear spectral mixture analysis (LSMA) assumes that the pixel-to-pixel variability in a scene 
results from varying abundances of spectral endmembers. It follows that the spectral response for each 
pixel is a linear combination of endmember spectra, weighted by their fractional abundances. 
Assuming that the number of endmembers and their spectral signatures are known, the fractional 
abundances of endmembers in a given pixel are typically determined from a least squares fit [23, 24].  

Let ),( jip  denote the spectrum for the pixel in the image coordinates (i, j), the foundation of LSMA 

can be defined by the following formulation 
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where m is the number of endmembers, ke is the kth endmember,  ),( jiε is the approximation error term 
(residual), which could be due to the noise in the data or due to modeling error (or both), and kjif ),(  is 

the fractional abundance for the kth endmember of pixel (i, j).  
Spectra can be represented as points in an n-dimensional scatter plot where n is the number of 

bands. If we omit the error term in (1), the possible linear mixtures computed from (1) and (2) form a 
simplex mC  defined by m vertices that are corresponding to the endmembers, meee ,,, 21  [25]. 
According to Gritzmann and Klee (1994)[26], the volume of the simplex mC  can be calculated as  
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where  ],,,[ 11312 eeeeeeW n −−−= .  )( mCV  is the volume of the simplex defined by m endmembers, 
)det(⋅ denotes the determinant of a matrix, ⋅  denotes the operation of absolute value. Once the 

endmembers ( meee ,,, 21  ) are determined, their abundance can be estimated through the least squares 

method, which is equivalent to a projection on the simplex [25].  
Using this framework, if all data points (pixels) are examined in n-dimensional space, endmembers 

present in the scene should be found at the vertices of the simplex. The interior space of the simplex 
then represents feasible mixtures. Thus, the task of finding endmembers is actually the identification of 
the simplex vertices, which has been the foundation for the geometric interpretation of hyperspectral 
data and for endmember extraction algorithms based on convex geometry. The spectral endmembers 
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are determined as the spectral points closest to the vertices of the simplex formed by the image data in 
n-dimensional space, and are thus, the spectrally purest points of the image data. 

The set of endmembers determined from convex geometry has the following properties that are 
relevant to the SPA algorithm proposed in this paper: 

 
Property 1:  The endmembers represent the pixels that contain the largest data “volume” [12, 26]. This 

property is used in the SPA algorithm to determine if it is converging. 
Property 2:  A vector (pixel) with maximum Euclidean norm (magnitude) must be located at one of 

the vertices of the simplex [25, 27]. It is the main step in SPA to identify pixels at the 
vertices of the simplex. 

Property 3:  For a given point in the simplex, a point with maximum distance must be a vertex of the 
simplex [27].  

Property 4:  The affine transformation (e.g. orthogonal projection) of a simplex is also a simplex, and 
endmembers are still located in the vertices of the new simplex after this transformation 
[14, 26]. In SPA this allows the use of orthogonal subspace projections as the core 
mechanism for endmember extraction. 

2.2. Endmember extraction algorithms based on convex geometry  

Search algorithms based on convex geometry rely on the four properties listed above, but differ in 
their approach to locate the vertices of the simplex. Such methods include PPI, N-FINDER, IEA, 
VCA, Max_D, ORASIS, SMACC, ICE, MVC-NMF and SGA. N-FINDER finds the set of pixels that 
define the simplex with the maximum volume inscribed within the dataset. IEA uses a series of 
constrained unmixing and chooses as the endmembers those pixels that minimize the residual error in 
the unmixing images. VCA and Max_D exploit the orthogonal projection approach to iteratively find 
the vertices of the simplex. SMACC is another algorithm for endmember extraction, which uses a 
convex cone model (also known as Residual Minimization) and constrained oblique projection to 
derive endmembers [16]. The patented ICE  combines ideas from convex geometry and multivariate 
curve resolution techniques to find endmembers, which trades off goodness-of fit of the convex 
geometry model against the size of the simplex[17]. SGA finds a set of desired endmembers by 
growing a sequence of simplexes, improving the commonly used N-FINDR algorithm. ORASIS 
performs the endmember selection using the learning vector quantization (LVQ) concept and a 
minimum volume transform (MVT). MVC-NMF integrates the least squares analysis and the convex – 
geometry model by incorporating a volume constraint into the nonnegative matrix factorization 
(NMF). With the exception of ICE, ORASIS and MVC-NMF, the methods mentioned above have an 
assumption that vertices of the simplex (e.g. endmembers) can be represented by corresponding pixels 
in the scene. When no pixels in the scene match the vertices, the nearest pixels (e.g. mixtures) are 
selected. Whether this assumption is met is in part a function of the nature of the scene (spatial 
arrangement of targets) and the spatial resolution of the imagery.  In the case of SMACC, N-FINDER, 
VCA, SGA and Max-D, one pixel (the most extreme pixel) is selected to represent one endmember 
and thus these methods suffer from the inherent sensitivity of convex geometry to outlier pixels [21]. 
Although principal component analysis (PCA), minimum noise fraction transform (MNF) and singular 
value decomposition (SVD) can be applied to the data prior to the endmember extraction to minimize 
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the impact of noise [14, 28], these can also result in the loss of detection of useful endmember pixels 
characterized by subtle spectral detail. In order to overcome the outlier problem, IEA selects multiple 
pixels with a small spectral angle to the most extreme pixel, and the average of these pixels is used as 
an endmember. The robustness of this approach to noise is reported in Plaza’s work on simulated data 
[29, 30]. However, in the case of isolated outlier pixels, the spectral angle between the outlier and 
other pixels can be large. In such a case IEA will still select the outlier pixel as an endmember 
resulting in a false endmember. An additional risk to the use of spectral angle for the selection of 
pixels that represent a given endmember is that these pixels may represent spatially distinct targets in 
the scene that are characterized by a similar spectral shape but with distinct subtle spectral difference 
as indicated by Turner II et al. (2004)[31]. In such a case the distinct character of each target would be 
lost due to spectral averaging and the lack of consideration of their spatial association. Thus one 
endmember would be identified rather then two.   

3. The successive projection algorithm (SPA)  

3.1. Spectral similarity and spatial adjacency as selection criteria  

In this study we propose a more robust approach that uses the spectral angle (alike IEA) and the 
spatial adjacency of pixels in the image to constrain the selection of candidate pixels representing an 
endmember. Two assumptions are made: 1) pixels that are spatially adjacent are more likely to have 
similar spectral properties and thus represent one endmember, and, 2) the probability that two adjacent 
pixels are both spurious is low. These assumptions are certainly reasonable if the target application is 
geological mapping because mappable units (e.g. bedrock lithologies) typically have spectral 
properties with spatial continuity in hyperspectral imagery.  

The next section (e.g. 3.2.) describes how a vertex (e.g. an extreme pixel) is identified based on its 
spectral uniqueness in the simplex (the distinctness is measured in terms of the vector Euclidean norm 
or the distance of the pixel to the subspace defined by the previously selected endmembers). A 
meaningful endmember for this vertex is then the average of multiple candidate pixels that are 
spectrally distinct (e.g. they are located at or near one of the corners of the simplex) and are spatially 
adjacent.  To find these candidate pixels we construct a pixel set, possibleP  , consisting of  r pixels (the 

value of r is user defined and here set to 10) that are closest to the vertex (this step is identical to IEA).  
Then a subset,  
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∈≤= ,    (4) 
is selected from these r pixels ( possibleP ) subject to conditions ((5) and (6)): 
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and  θ_t  is the threshold value for the spectral angle beyond which two spectra are not considered 
similar. The value of θ_t  was set at 2.5 degrees based on experiments.  

The average vector of candidateP , represents one endmember spectrum. When no pixels in possibleP  
satisfy the conditions (5) and (6), the most extreme pixel in possibleP  is selected as the endmember. 

3.2. Description of the SPA algorithm  

SPA starts by identifying the two most distinct endmembers, 1e and 2e , typically representing 
respectively the brightest and darkest pixels. It then iteratively finds remaining endmembers, using 
orthogonal projections, until the number of endmembers defined by the user is obtained. Below is a 
step-by-step description of the SPA algorithm. 

1) Step 1: Parameter setting  

Values for the following three parameters must be set: the number of endmembers (m) to find, the 
spectral angle threshold ( θ_t ) and the spatial threshold ( pixelt _ ). 

2) Step 2: Extraction of the first endmember ( 1e ) 

The vector norms of all pixels in the image are calculated to locate the pixel that has the largest 
norm. According to Property 2, this pixel is at one of the simplex vertices and typically is the brightest 
pixels in the image cube. The first endmember 1e  is then estimated as described in Section 3.1.  

3) Step 3: Extraction of the second endmember ( 2e ) 

The distances between all pixels and 1e  are calculated and the pixel that has the largest distance is 
located. According to Property 3, this pixel will be at another vertex of the simplex usually 
corresponding to the darkest object in the scene (e.g. water body or shade). The 2nd endmember, 2e , 
can then be estimated according to section 3.1.  

4) Step 4: Orthogonal projection and extraction of a new endmember 

An endmember matrix ],[ 21 eeU =  is then constructed using the two previously defined 
endmembers, and all pixels are projected to the subspace, projS , orthogonal to the space spanned by 

U as 
),(_),( jiprojji pOp =  ,       (8) 

where projjip _),(  and ),( jip  are the projected and original pixel vector at image 
location ),( ji respectively. O is the projection operator,  

,+−= UUIO        (9) 
where I is the identity matrix,  and +U is the pseudo inverse of U , denoted  by 

TT UUUU 1)( −+ = .      (10) 
In the projected subspace ( projS ), the contribution to the mixtures from endmembers in U is 

eliminated. According to Property 4, the projected data in the new space still conform to the convexity, 
that is to say the endmembers are still at the vertices of the simplex.  The vector (pixel) with the 
maximum norm in the projected subspace ( projS ) will correspond to a new endmember (Property 2) in 
this case 3e , and this pixel is located at the apex of the simplex furthest away from the subspace 
spanned by the previously defined endmembers, 1e  and 2e . 
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5) Step 5:  Complete the search of all endmembers 

The endmember matrix, ],,[ 321 eeeU = , is then updated and Step 4 repeated to define a new 

endmember. This step is repeated until the predetermined number (m) of endmembers is reached. 
We calculate the change of the simplex volume with each subspace projection because it provides 

an insight on the convergence of the algorithm. The volume of the simplex can be calculated only 
when the simplex has more than 3 vertices. According to Property 1, the complete endmember set 
defines a simplex with the maximum volume, assuming that a simplex can fit the hyperspectral data 
perfectly.  Thus, as a new endmember is estimated from the data, a new vertex is added to the simplex 
defined by the previous endmembers, and the volume of the simplex increases until the requested 
number of endmembers is reached. The volume increase is determined by the spectral contrast between 
the current endmember and the previously defined endmember set. Assuming data with m 
endmembers, if 1−lC  and lC denote the simplexes defined by the current endmember set, 
{ }ll eeee ,,,, 121 − and the previous endmember set { }121 ,,, −leee , the ratio of the volumes of lC  and 

1−lC  can be calculated as 
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 As endmembers are selected (e.g. the value of l is approaching m), the lratiov _  decreases and 

theoretically converges to 1.0 if the simplex can fit the hyperspectral data very well [32]. The noise 
level and the complexity of the data will impact how quickly the volume ratio ( lratiov _ ) converges 

and whether it converges to 1.0.  

4. Description of the test data  

The SPA algorithm was evaluated using two hyperspectral datasets. The first one was collected 
over the Cuprite mining district, Nevada, in July 1995 wit the Airborne Visible Infra-Red Imaging 
Spectrometer (AVIRIS) as part of an AVIRIS Group Shoot [2] and is available in the tutorial CD of 
the ENVI software. The second dataset was acquired by the Probe-1 airborne hyperspectral sensor 
flown over Baffin Island, Canada in July 2000. Before describing the characteristics of these data, we 
emphasize that they differ in many ways including in their spectral/spatial resolution, scene complexity 
and extent of vegetation cover. These differences allow a more thorough investigation of algorithm 
performance. 

4.1. AVIRIS data for Cuprite 

This hyperspectral cube has 400 * 350 pixels, and 50 bands of short-wave infrared data (1.9 μm ~ 
2.4 μm). The spatial and spectral resolutions are respectively 20m and 10 nm. The data were corrected 
to reflectance using the ATREM (ATmospheric REMoval) method [33], and residual noise was 
minimized using the EFFORT (Empirical Flat Field Optimized Reflectance Transform) procedure 
[34]. Cuprite is located in west-central Nevada where large areas of exposed Cambrian sediments and 
Tertiary volcanics were intensively altered in mid- to late-Miocene [35]. Imagery for this site has been 
extensively investigated and reported in the remote sensing literature because of minimal vegetation 
cover and the presence of large outcrops exposing a suite of spectrally distinct alteration minerals [35-
38].  Kruse and Huntington (1996) analyzed the AVIRIS dataset of this study and used a Pixel Purity 



Sensors 2008, 8                            
 

1328

Index (PPI) to identified endmembers corresponding to seven alteration minerals (zeolite, alunite, 
buddingtonite, calcite, kaolinite, silica and muscovite/illite)[2]. The results were consistent with that 
found by Swayze et al. (1992)[39] using the Multiple Spectral Feature Mapping Algorithm (MSFMA) 
who validated the predictions using field samples examined with X-Ray Diffraction. Below we refer to 
the image endmembers defined by Kruse and Huntington (1996)[2] as PPI-endmembers as part of the 
validation of the SPA algorithm.   

The AVIRIS dataset was used to: 1) determine whether SPA can extract the 7 mineral endmembers 
documented by previous authors; 2) determine whether SPA converges; and 3) assess the merits of the 
spatial constraint in SPA.  The SPA was applied to the Cuprite Cube with the following parameters: 
the total number of endmembers for this scene was set to 19 and the threshold values for θ_t  and 

pixelt _  were set to 2.5 degrees and 1 pixel, respectively.   The choice of the total number of 
endmembers is based on a previous hyperspectral study over the same area by Plaza and Chang (2005) 
who utilized the concept of virtual dimensionality to determine the number of endmembers [30]. 

4.2. Probe-1 data for Baffin Island 

The test data from the Baffin island study area (Figure 1) covers part of the northeastern segment of 
the Paleoproterozoic Trans-Hudson Orogen [40], where the Lake Harbour Group comprises upper 
amphibolite to granulite grade metamorphosed granodiorite, monzonite, tonalite, syenite, peridotite, 
gabbro, carbonate, and clastic metasedimentary units (Figure 1) [41, 42]. The later include 
garnetiferous psammite, pelitic and semi-pelitic rocks.  The calcareous rocks are commonly 
interlayered with siliciclastic rocks. Within the metasedimentary rocks orthoquartzite occurs as 
discrete layers and garnet-rich monzogranite outcrops as tabular bodies 100’s of meters thick. 
Vegetation cover is limited (~25%), comprising primarily moss and grass, with dwarf shrub willows.  
Rock encrusting lichens covering a few percent to almost 100 percent of the rock are common to the 
majority of rock units.  The region also includes numerous small lakes and year-round snow cover in 
gullies and shaded areas.  

The airborne hyperspectral data (~3.5 x 7 km) were acquired with the Probe I sensor, which 
comprises 128 channels from 446 - 2543 nm with an average band Full Width Half Maximum of ~15 
nm and a Ground Instantaneous Field of View of  ~7 m. (Figure 2).  A vicarious atmospheric 
correction of the data was performed by the Canada Centre for Remote Sensing using field spectra 
acquired at the Iqaluit airport concurrently with the overflight. Excluding bands with low signal due to 
water absorption near 1.4µm and 1.9 µm, 101 bands were used for the test to which  no additional 
preprocessing (e.g. smoothing filter) was applied. Field sampling and collection of spectra took place 
along traverses oriented perpendicular to the dominant structural and stratigraphic trends (Figure 2).  
The spectra were acquired with a portable ASD® field spectrometer that has 2151 bands covering the 
350 – 2500 nm spectral range.   A total of 217 spectral measurements were acquired for 56 sites, some 
of which lie outside, but proximal to the study area, and are representative of the geology shown in 
Figure 1.  Multiple measurements were taken at each site for fresh, weathered, polished, and partial to 
fully lichen coated surfaces.   
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Figure 1. Regional geology of south-western Baffin Island and zoom of local geology of 
the study area (1:100 000) (modified from St-Onge et al., 1999). 

 

 
 

We chose to evaluate the performance of SPA with this test data owing to 1) excellent bedrock 
exposure and limited continuous vegetation; 2) the spectral diversity of the rock units and the 
relevance of some units to mining exploration (gaussan and peridotite); 3) the variable spatial 
distribution of the rock units spanning large continuous exposures to small sporadic outcroppings; and, 
4) the availability of field spectra and spectra of rock samples for the validation of endmembers 
extracted from imagery.  The extraction of geological endmembers from this imagery is more 
challenging than for the imagery of Cuprite.  This can be attributed to the presence of snow, tundra 
vegetation and rock encrusting lichen, which lower the relative spectral contrast between geological 
endmembers.  

We also compare the endmembers derived from SPA with that derived from IEA, given that IEA 
has been reported as the most robust convex-based algorithm [29,30].  For the analysis with SPA the 
threshold values of θ_t  and pixelt _  were set to 2.5 degrees and 1 pixel, as was done for the Cuprite 
region. The number of endmembers was set to 30 for SPA and IEA. For IEA the spectral angle was set 
to 2.5 degrees.  

5. Results 

5.1. AVIRIS data for Cuprite 

Comparison with PPI endmembers validated in the literature 
We first examine the SPA endmembers in the context of the seven mineral PPI endmembers 

(zeolite, alunite, buddingtonite, calcite, kaolinite, silica and muscovite/illite) previously reported by 
Kruse and Huntington (1996)[2].  Out of 19 endmembers derived from the SPA, 16 are for minerals 
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and 3 for shade/shadow (Table 1). A comparison of the 16 mineral endmembers and “true” 
endmembers (PPI_endmembers, Section 4.1.) is shown in Figure 3. Each SPA endmember was 
calculated from more than 2 pixels (2-9). For each of the seven minerals we found at least one SPA 
endmember with a good match in spectral shape to that of the field validated PPI endmembers. When 
SPA picks multiple endmembers for a given mineral these differ in spectral magnitude or in subtle 
variations in their spectral shape (Table 1 and Figure 3). For example, two SPA endmembers (SPA_12 
and SPA_15) were selected for the mineral alunite_2 (Figure 3b).  SPA and PPI_endmembers result 
from the average of multiple candidate pixels located at vertices of the simplex. However they differ in 
their list of candidate pixels as PPI does not take into account spatial information, and thus, the 
averaging process generates different solutions resulting in endmember spectra that are distinct in their 
detailed shape and amplitude. One endmember, SPA_9 (with an absorption feature at 2.27 µm, Figure 
3j), could not be matched to a PPI mineral endmember and has yet to be properly labeled though the 
observed feature is consistent with the mineral jarosite discussed in Clark et al. (2003)[43].  

Figure 2.  Probe 1 hyperspectral data of the study area.  Circles represent ground locations 
where field spectra and samples were collected. 
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Table 1. List of SPA endmembers derived from the Cuprite data and corresponding PPI 
endmember when applicable 

 
SPA endmember PPI-endmember (“truth”) 
SPA_1, SPA-17 Silicate (bright) 
SPA_16 Silica (dark) 
SPA_4 Alunite_1 (2.16 µm) 
SPA_12, SPA_15 Alunite_2(2.18 µm) 
SPA_8 Buddingtonite 
SPA_3, SPA_14 Kaolinite 
SPA_6 Calcite 
SPA_5 Zeolite 
SPA_7, SPA_10, SPA_11, 
SPA_13 

Muscovite/illite 

*SPA_9 Na 
**SPA_2, SPA_18, SPA_19 Na 

* This endmember is a rock/mineral. ** These endmembers are for shade/shadow. 

Merits of the spatial constraint 
In figure 4 we compare endmembers derived from SPA and from SMACC (implemented in ENVI). 

Both methods successfully extracted endmembers for the known minerals occurrences. Because 
SMACC uses individual pixels to form each endmember, the SMACC endmembers display greater 
residual calibration errors (Figure 4a). SMACC also extracted additional endmembers capturing noise 
(Figure 4b), a pitfall that was not observed for SPA.  As a reminder SPA begins by selecting multiple 
pixels as the possible candidate set before applying the spectral angle and spatial adjacency selection 
constraints. Consequently SPA finds the most noisy pixel and examines if there are neighboring pixels 
that meet the spectral and spatial criteria within the candidate set. Otherwise, it repeats the search 
process with the second most extreme pixel.  If none of the pixels within the possible candidate set can 
meet the spectral and spatial criteria, the most extreme pixel is considered an endmember. 

Changes in simplex volume 
To illustrate the convergence of SPA we show the changes in the simplex volume between 

successive iterations (e.g. volume ratio, equation 11) as a function of the number of iterations (Figure 
5). The first 6 iterations capture the most important changes in the simplex volume. With additional 
endmembers, the change in volume ratio decreases and converges at endmember 18 
( 15.1_ 18 =ratiov ) beyond which the volume ratio is less than 1.0. For this particular data set, the 

geological endmembers of interest  are extracted before endmember 18 (Table 1), thus convergence of 
the volume ratio is in this case a good indicator of the number of useful endmembers in the scene. 
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Figure 3. Comparison between SPA endmember and PPI endmember("true” endmember). 
The solid lines denotes PPI endmembers. 
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Figure 4. Comparison of SPA and SMACC endmembers. a) endmember representatives of 
the same  target (zeolite), b) SMACC endmember capturing noise 

 
 
Figure 5. Convergence of SPA for the Cuprite data. The arrow marks the last iteration 
where the simplex volume ratio for successive iterations exceeds 1.0. 

 

5.2. Probe-1 data for Baffin Island 

Comparison with spectra collected in the field 
 

Out of thirty endmembers, twenty-one represent vegetation, water, snow and shadow (Table 2). 
Examples for snow, vegetation and lichen with closely matched ground-based reflectance spectra are 
illustrated in Figure 6. The remaining nine endmembers are geological and belong to six rock types: 
Fe-rich metasediments, clay- metasediments, marble, felsic rock (varnish/granite), peridotite  and 
quartzite (Figures 7,8; Table 2).  
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Figure 6. Endmember spectra for snow, vegetation and lichen. The dashed lines are the 
SPA-endmembers,  and the solid lines are the corresponding closely matched field spectra. 
The strong water absorption  features near 1.4 and 1.9 um were discarded because of low 
signal. 

 
 
Eight geological endmembers (SPA_3, SPA_6, SPA_12, SPA_16, SPA_22, SPA_23, SPA_28 and 

SPA_30) closely match field spectra (Figure 7). The SPA_12 endmember correlates well with field 
spectra of Fe-metasediment characterized by a strong absorption feature near 0.9 µm attributed to 
goethite or hematite [44] (Figure 7a). In the field, this endmember also corresponds to the occurrence 
of gaussans. The SPA_30 is characterized by a broad ferrous-iron absorption feature at 0.93µm 
observed in spectra of pyroxene and hornblende [38] and a Fe,Mg-OH vibrational feature at 2.32µm, 
and is a close match to the field spectrum of peridotite (Figure 7b).  SPA_6 and SPA_23 match the 
field spectrum of marble based on a strong carbonate (CO3) feature near 2.30-2.35 µm, but they differ 
in overall spectral amplitude. For SPA_ 23 the carbonate feature is centered near 2.32 µm but for 
SPA_6 it lies near 2.34 µm. (Figure 7c). SPA_3 is a close match to the field spectrum of granite 
(Figure 7d) and represents multiple felsic targets with common spectral properties (e.g. overall higher 
reflectance and lack of obvious spectral absorption features). SPA_16 is another metasediment but it 
displays a clay absorption feature at 2.2 µm and a weak iron feature at 0.9µm (Figure 7e). Two 
endmembers spectrally similar but varying in amplitude, SPA_22 and SPA_28, are identified as 
quartzite based on a match with field spectra (Figure 7f).  
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Table 2. Summary of SPA endmembers derived for the Baffin Island site. The geological 
endmember are highlighted 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We failed to find field spectra that closely match the endmember SPA_11. The closest match is 

peridotite (Figure 8), but this endmember lack the spectral absorption feature at 2.32µm that is 
observable in the SPA_30 peridotite endmember and field spectra (Figure 7b). The accurate 
identification of this endmember requires additional fieldwork.  

Comparison with IEA image endmembers 
We also performed a comparison between endmembers of geological interest derived from IEA and 

SPA (Table 3). For IEA the total number of endmembers was set to 30 and the spectral angle to 2.5 
degrees. Results from both methods are comparable with two exceptions. First, SPA misses a 
endmember (metasediment) identified by IEA that has a good match with field spectra (Figure 9). In 
the second exception SPA extracts a second endmemember for peridotite (Figure 8). The endmember 
abundance maps (not shown) suggests that both peridotite endmembers map distinct spatial areas.  

Changes in simplex volume 
The change in the volume ratio ( lratiov _ ) between successive iterations is shown in Figure 10. The 

curve converges at endmember 24 ( 24.1_ 24 =ratiov ) after which the volume ratio remains less than 
1.0. However, we found that endmembers of geological interest were extracted after endmember 24. 
For example, peridotite, an important rock type for the mining exploration of nickel, is extracted as the 
30th endmember. The majority of the snow, water, shade and vegetation endmembers were derived 
before this point, as shown in Table-2. 

SPA Endmember Label 
1, 4, 8, 9, 13, 14, 15, 17, 19, 
20, 24, 26, 27 

Snow 

2 Water 
3 Felsic (Granite/varnish) 
5 Vegetation (wet) 
6 Marble 
7 Shade 
10, 18, 25, 29 Lichen 
11 Peridotite  
12 Fe-metasediment 
16 Clay-metasediment 
21 Dry vegetation 
22 Quartzite 
23 Marble (low albedo) 
28 Quartzite (low albedo) 
30 Peridotite 
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Figure 7. Comparison of SPA geological endmembers and field spectra. The strong water 
absorption features  near 1.4 and 1.9 um were discarded because of low signal. 

 

Figure 8. Comparison between the SPA_11 endmember and field spectrum of peridotite. 
The circle marks the region where absorption feature is present on the field spectrum of 
peridotite but absent from the SPA_11. 
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Table 3. Comparison between IEA and SPA endmembers 

Rock_type IEA endmember SPA endmember 
Felsic (Granite/varnish) IEA_3 SPA_3 
Marble IEA_7, IEA_22 

(Similar but differ 
in amplitude) 

SPA_6, SPA_23 
(Similar but differs in 
amplitude) 

Peridotite IEA_14 *SPA_11, SPA_30 
Fe-metasediment IEA_19 SPA_12 
Clay-metasediment IEA_13 SPA_16 
Metasediment IEA_28 Missing 
Quartzite IEA_30 SPA_22, SPA_28 

(Similar but differs in 
amplitude) 

*This endmember is labeled as peridotite based on Figure 8. 

Figure 9.  The endmember found by IEA but not by SPA. The solid line is a field spectrum  
for metasediment, the dashed line is the IEA endmember. 

 

Figure 10. Convergence of the SPA for the Baffin data The arrow marks the last iteration 
where the simplex volume ratio for successive  iterations exceeds 1.0. 
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6. Discussion and future work 

The SPA algorithm extracts endmembers from hyperspectral data without having to reduce the data 
dimensionality. It uses the spectral angle (alike IEA) and the spatial adjacency of pixels in the image to 
constrain the selection of candidate pixels representing an endmember. We designed SPA based on the 
observation that many targets have spatial continuity (e.g. bedrock lithologies) in hyperspectral 
imagery and thus a spatial constraint would be beneficial in the endmember search. We assumed that 
pixels that are spatially adjacent are more likely to have similar spectral properties and thus represent 
one endmember, and, that the probability that two adjacent pixels are both spurious is low. 
Experiments on two datasets demonstrate that SPA can effectively extract endmembers while requiring 
minimal user interaction.  

It should be pointed out that the procedure to identify the simplex vertices in SPA is similar to that 
for advanced convex-based endmember selection methods such as MAX-D, VCA and SGA.  
However, of the convex-based endmember-search algorithms discussed in this paper, only SPA makes 
use of both the spectral angle and spatial adjacency to determine which pixels should form one 
endmember. By using the average of multiple pixels as one endmember, the SPA-derived endmember 
spectra appear less noisy (e.g. smoother), which is helpful for the improvement of unmixing results 
[45]. Given that spatially adjacent pixels are not likely of being simultaneously spurious, the use of the 
spatial adjacency makes SPA endmembers less sensitive to isolated noisy pixels, an inherent problem 
for convex–based endmember-search methods [21].  Although we initially designed SPA for 
geological applications (e.g. spatial continuity of bedrock), it offers potential for a variety of 
applications where the premise of spatial adjacency applies. Ecological examples include tree crowns 
and plant communities.  

An additional product of the SPA is data describing the change of the simplex volume ratio between 
successive iterations during the endmember extraction. It illustrates the influence of a new endmember 
on the data structure, and provides information on the convergence of the algorithm. Though the rate 
of convergence speed can vary with the complexity of the scene, the patterns are similar showing the 
largest changes in volume ratio at the beginning of the endmember extraction process, followed by 
progressively smaller changes and convergence towards a plateau. If the endmember search terminates 
before the convergence point (the volume ratio is close to 1.0), significant endmembers will be missed. 
However as seen in the Baffin island example, endmembers for targets of interest may also be found 
beyond the convergence point. Thus additional research is required to properly constrain the number of 
endmember for a given search and application.  

Comparison of endmembers obtained from SPA and IEA showed that both algorithms generate  
similar results (Table 2). Both methods operate on reflectance data, which is different from other 
algorithms such as VCA, N-FINDER and ICE that require a data dimensional reduction step. In the 
experiment with the Baffin island data, SPA missed one rock type (Metasediment), but obtained a 
additional rock endmember identified as a possible peridotite. Clearly different endmember-search 
algorithms can yield different endmember sets, indicating that the use of multiple search algorithms 
may  reduce the chance of missing endmembers of interest.  

The computation load of endmember-search algorithms is an important issue for the automatic 
extraction of endmembers, given the increasing volumes of hyperspectral data available. We did not 
study the computational efficiency of SPA, but because SPA is fundamentally similar to VCA and 
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Max_D, that reported to be of high computational efficiency [14, 27], we believe the efficiency of SPA 
should be comparable.  It takes about 35 minutes for SPA to extract 30 endmembers for a data cube of 
512 pixels, 512 lines and 101 bands using a PC with PIV CPU (1.0GMHz) and 512M of RAM. This 
test is based on the current IDL implementation of SPA algorithm which has not been optimized for 
computational efficiency. 

There are a number of potential improvements to SPA that require further research namely: 1) a 
means for the automatic determination of the spectral angle threshold ( θ_t ) and spatial threshold 
( pixelt _ ), and 2) a means to constrain the total number of the endmembers in the scene.  In our 
experiments we found that 2.5 degrees for θ_t  and 1 pixel for pixelt _  provide good endmember 
estimates. However, the selection of pixelt _  and θ_t  should be scene dependent because of the 
varying spatial and spectral complexity in different data. Currently, the choice of these two thresholds 
is still arbitrary and it would valuable to develop a more robust way to define values for θ_t  

pixelt _ . Finally, we do not yet have a definite means of constraining the number of endmembers in a 
given search, though the simplex volume change during the search offers a qualitative assessment. The 
concept of virtual dimensionality (VD) has been proposed and proven useful for this purpose in recent 
years [18, 46]. The use of the VD concept within SPA may allow the study of the relationship between 
VD and simplex volume in the future and prove valuable to constrain the number of endmembers.  
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