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Abstract: Accurate and timely information about land cover pattern and change in urban 
areas is crucial for urban land management decision-making, ecosystem monitoring and 
urban planning. This paper presents the methods and results of an object-based 
classification and post-classification change detection of multitemporal high-spatial 
resolution Emerge aerial imagery in the Gwynns Falls watershed from 1999 to 2004. The 
Gwynns Falls watershed includes portions of Baltimore City and Baltimore County, 
Maryland, USA. An object-based approach was first applied to implement the land cover 
classification separately for each of the two years. The overall accuracies of the 
classification maps of 1999 and 2004 were 92.3% and 93.7%, respectively. Following the 
classification, we conducted a comparison of two different land cover change detection 
methods: traditional (i.e., pixel-based) post-classification comparison and object-based 
post-classification comparison. The results from our analyses indicated that an object-
based approach provides a better means for change detection than a pixel based method 
because it provides an effective way to incorporate spatial information and expert 
knowledge into the change detection process. The overall accuracy of the change map 
produced by the object-based method was 90.0%, with Kappa statistic of 0.854, whereas 
the overall accuracy and Kappa statistic of that by the pixel-based method were 81.3% and 
0.712, respectively.  
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1. Introduction 

Accurate and timely information about land cover in urban areas is crucial for urban land 
management decision-making, ecosystem monitoring and urban planning. Although land cover 
changes can be monitored by traditional inventories and survey, satellite/aerial remote sensing 
provides a cost-effective way in land cover change detection, as it can explicitly reveal spatial patterns 
of land cover change over a large geographic area in a recurrent and consistent way.   

Change detection has been defined as a process of “identifying differences in the state of an object 
or phenomenon by observing it at different times” [1]. Various methods have been employed using 
remotely sensed data for land cover change detection for many decades in urban environments [1-3]. 
Those methods may be broadly classified into two categories: pre-classification change detection and 
post-classification comparison [1, 4].   

A variety of change detection techniques has been developed for pre-classification change 
detection, or simultaneous analysis of multitemporal data [1, 3, 4], including image differencing [5], 
image regression [5], image ratioing [6], vegetation index differencing [7], principal components 
analysis [8], change vector analysis [9-10], artificial neural networks [11], and classification tree [12] 
to name just a few. These techniques generally generate “change” vs. “no-change” maps, but do not 
specify the type of change [1-2]. 

Post-classification comparison methods detect land cover change by comparing independently 
produced classifications of images from different dates [1, 4]. Although the post-classification 
comparison method requires the classifications of images acquired from different times, it can not only 
locate the changes, but also provide “from-to” change information [13-15]. In addition, post-
classification comparison minimizes the problems caused by variation in sensors and atmospheric 
conditions, as well as vegetation phenology between different dates, since data from different dates are 
separately classified [1, 4] and hence reflectance data from those two dates need not be adjusted for 
direct comparability.  

Pixel-based post-classification comparison has been widely used for land cover/land use change 
detection. In particular, this method has been successfully applied for change detection using land 
cover maps obtained from remotely sensed imagery with coarse or medium spatial resolution [e.g. 14-
16]. As the urban environment is extremely complex and heterogeneous, and features are often smaller 
than the size of a medium-resolution pixel (e.g., buildings and side walks), there is an increasing 
interest in urban land cover mapping and change detection using high-spatial resolution multispectral 
imagery from satellite and digital aerial sensors (e.g., QuickBird from DigitalGlobe, Inc., IKONOS 
from GeoEys, Inc., Emerge from Emerge, Inc.). However, relatively few studies have tested how a 
pixel-based post-classification comparison approach performs when using very high-spatial resolution 
imagery. 
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Meanwhile, object-based image analysis is quickly gaining acceptance among remote sensors and 
has demonstrated great potential for classification and change detection of high-spatial resolution 
multispetral imagery in heterogeneous urban environments [e.g. 17-19]. Rather than dealing with 
individual pixels, the object-based approach first segments imagery into homogeneous small objects, 
which then serve as building blocks for subsequent classification and change detection of larger 
entities. Object characteristics such as shape, spatial relations and reflectance statistics, can be used for 
classification and change detection. Several researchers have demonstrated that an object-based 
approach based to image segmentation could improve the accuracy and efficiency of change detection 
(e.g. 17, 20-23]. Although there is an increasing interest in the application of object-based approaches 
for change detection, relatively few studies have investigated the effectiveness and efficiency of an 
object-based approach for post-classification comparison change detection, particularly, using very 
high-spatial resolution data [24-25].   

This paper presents the methods and results of an object-based classification and post-classification 
change detection of multitemporal high-spatial resolution Emerge aerial imagery in the Gwynns Falls 
watershed in Maryland from 1999 to 2004. The objectives are to: (1) develop an object-based 
classification and post-classification change detection approach to map and monitor land cover 
changes in urban areas; (2) compare an object-based approach with a pixel-based method and evaluate 
their effectiveness for post-classification comparison change detection in an urban setting; and (3) use 
the resulting information to map land cover and land cover change in the Gwynns Falls watershed 
from 1999 to 2004. 

2. Study area 

This research focused on the Gwynns Falls watershed, a study site of the Baltimore Ecosystem 
Study (BES), a long-term ecological research project (LTER) of the National Science Foundation 
(www.beslter.org). The Gwynns Falls watershed, with an area of approximately 17,150, lies in 
Baltimore City and Baltimore County, Maryland and drains into the Chesapeake Bay (Figure 1). The 
Gwynns Falls watershed traverses an urban-suburban-rural gradient from the urban core of Baltimore 
City, through older inner ring suburbs to rapidly suburbanizing areas in the middle reaches and a 
rural/suburban fringe in the upper section. Land cover in the Gwynns Falls Watershed varies from 
highly impervious in the lower sections to a broad mix of impervious surface and forest cover in the 
middle and upper sections. The variety of urban and suburban land cover types, combined with the 
diversity of growing urbanization along the urban-rural gradient, makes it ideal for this study. 

3. Methods 

3.1 Data collection and preprocessing 

High spatial resolution color-infrared digital aerial imagery, Light Detecting And Ranging (LIDAR) 
data, and other ancillary data were used in this study. Digital aerial imagery from Emerge Inc. for two 
years (October 1999 and August 2004), were collected for the Gwynns Falls watershed. The imagery 
was 3-band color-infrared, with green (510 – 600nm), red (600 – 700nm), and near-infrared bands 
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(800 - 900nm). Pixel size for the imagery was 0.6m. The imagery was orthorectified using a bilinear 
interpolation resampling method, and meets the National Mapping Accuracy Standards for scale 
mapping of 1:3,000 (3-meter accuracy with 90% confidence). LIDAR data used in this study were 
acquired in March 2002. Both the first and last vertical returns were recorded for each laser pulse, with 
an average point spacing of approximately 1.3m. A surface cover height model with 1-m spatial 
resolution was derived from the LIDAR data, which was used to aid in land cover classification. 

Property parcel boundaries and building footprints datasets were obtained in digital format from 
Baltimore City and Baltimore County municipal governments, and were used to both facilitate object 
segmentation and obtain greater classification accuracy. The parcel boundaries had a high degree of 
spatial accuracy when compared with 1:3,000 scale 0.5m aerial imagery. A limited assessment was 
conducted to compare the building footprints to the Emerge image data. The comparison indicates that 
the building footprints agree spatially with the Emerge imagery, but a small proportion of building 
footprints have not yet been digitized by municipal data providers in the study area. 

 

 
 

Figure 1. The Gwynns Falls watershed includes portions of Baltimore City and Baltimore County, 
MD, USA, and drains into the Chesapeake Bay. 

3.2 Object-based classification 

An object-based approach was used to conduct the classification separately on the data collected for 
the two years. Five land cover classes were used: 1) buildings, 2) pavement, 3) coarse textured 
vegetation (trees and shrubs), 4) fine textured vegetation (herbaceous vegetation and grasses), and 5) 
bare soil [26]. Here, we briefly describe the classification processes. A more detailed account is given 
in Zhou and Troy [19]. 
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We first segmented the image into objects. The image segmentation algorithm used in this study 
followed the fractal net evolution approach [27], which is embedded in Definiens Developer (formerly 
known as eCognition) [28]. The segmentation algorithm is a bottom-up region merging technique, 
which is initialized with each pixel in the image as a separate segment. In subsequent steps, segments 
are merged based on their level of similarity. The user uses a scale parameter which indirectly controls 
the size of objects by specifying how much heterogeneity is allowed within each [29]. The greater the 
scale parameter, the larger the average size of the objects. User-defined color and shape parameters can 
also be set to change the relative weighting of reflectance and shape in defining segments. The process 
stops when there are no more possible merges given the defined scale parameter. The segmentation 
was conducted at a very fine scale, with a scale parameter of 20. The scale parameter of 20 was 
determined by visual interpretation of the image segmentation results, where object primitives were 
considered to be internally homogenous, i.e., all pixels within an object primitive belonged to one 
cover class. Both the parcel boundary layer and the building footprints data were used as thematic 
layers when performing the segmentation. Due to the lower resolution, the LIDAR data were not 
considered in the segmentation process. However, the elevation information derived from the LIDAR 
was used for the classification [19].  

Once the segmentation was done, we used rule-based classification to classify each of the object 
primitives into one of the five land cover classes. The knowledge base of classification rules developed 
for the same geographic region in Zhou and Troy [19] was applied for the classification. The 
knowledge base of rules is a combination of classification rules relating to characteristics like object 
brightness, height, size, shape, adjacency, etc. The classified image objects were exported to a 
thematic raster layer with all of the 5 classes for each of the two years. 

3.3 Classification Accuracy Assessment 

An accuracy assessment of the classification results was performed using reference data created 
from visual interpretation of the Emerge image data. The accuracy assessment was carried out 
separately for the two years. A stratified random sampling method was used to generate the random 
points in the software of Erdas ImagineTM (version 9.1) [30]. A total number of 350 random points 
were sampled, with at least 50 random points for each class [31]. Error matrices that describe the 
patterns of mapped class relative to the reference data were generated, from which the overall 
accuracies, user’s and producer’s accuracies, and Kappa statistics were derived to assess the accuracies 
of the classification maps [32].  

3.4 Post-classification Change Detection 

Multi-date post-classification comparison change detection was performed to investigate land cover 
change in the study area from 1999 to 2004, following the land cover classifications for the two years. 
We conducted a comparison of two different land cover change detection methods: traditional (i.e., 
pixel-based) post-classification comparison [15, 16, 33] and object-based post-classification 
comparison.  
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Several types of land cover change were considered to be highly unlikely (e.g. buildings change to 
other land cover types) in our study area. Consequently, 16 classes, including 15 change categories and 
the class of no change, as listed in Table 1, were used in subsequent change detection analysis.  

3.4.1 Pixel-based post-classification change detection 

Pixel-based post-classification comparison is a common approach for land cover change detection 
[1, 13], and has been successfully used by studies such as Yang [16] and Yuan et al. [15] to monitor 
land cover and land use changes in urban areas. In this study, the pixel-based change detection was 
performed by first generating a difference map (i.e., a binary image of change and no-change) between 
1999 and 2004. The difference map was created by comparing the land cover types of the two 
classification maps. A 7x7 pixel low pass filter (i.e., a smoothing algorithm that takes the average for a 
7x7 cell moving window) was applied to the difference map to reduce the “salt and pepper” effects and 
remove the edge errors caused by spatial inaccuracies between data from the two years [34]. The 
window size of the filter was determined based on the horizontal errors of the Emerge data, which 
were estimated to be within 3 meters at the 90% confidence level. The final change map with the 15 
change categories and the class of no change was created by an overlaying analysis on the binary 
image and the two classification maps. 

Table 1. Class name and description for each of the 15 change categories and the no-change class. 

Class Name Class Description 

NoChange 
Land cover with no changes; Land cover changes from building to other 
land cover types, and from pavement to building, were considered as 
highly unlikely, and thus were classified as no-change. 

BareSoil-Building Land cover type changes from bare soil in 1999 to buildings in 2004 
CV-Building Land cover type changes from CV in 1999 to buildings in 2004 
FV-Building Land cover type changes from FV in 1999 to buildings in 2004 
BareSoil-Pavement Land cover type changes from bare soil in 1999 to pavement in 2004 
CV-Pavement Land cover type changes from CV in 1999 to pavement in 2004 
FV-Pavement Land cover type changes from FV in 1999 to pavement in 2004 
Pavement-BareSoil Land cover type changes from pavement in 1999 to bare soil in 2004 
CV-BareSoil Land cover type changes from CV in 1999 to bare soil in 2004 
FV-BareSoil Land cover type changes from FV in 1999 to bare soil in 2004 
Pavement-CV Land cover type changes from pavement in 1999 to CV in 2004 
BareSoil-CV Land cover type changes from bare soil in 1999 to CV in 2004 
FV-CV Land cover type changes from FV in 1999 to CV in 2004 
Pavement-FV Land cover type changes from pavement in 1999 to FV in 2004 
BareSoil-FV Land cover type changes from bare soil in 1999 to FV in 2004 
CV-FV Land cover type changes from CV in 1999 to FV in 2004 
CV: coarse textured vegetation; FV: fine textured vegetation. 
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3.4.2 Object-based post-classification change detection 

Similar to object-based classification, the first step in object-based change detection is to perform 
the image segmentation. However, instead of using multispectral imagery, we segmented the 2004 
land cover classification map. 

The resultant objects from the segmentation were identical to those of a union overlay operation 
between the two classified polygon layers (i.e., the 1999 and 2004 classification maps), in which all 
polygons from both classification layers were split at their intersections and preserved in the resultant 
object level, as illustrated in Figure 2. Both classification maps for 1999 and 2004 were used as 
thematic layers when performing the segmentation. When using a thematic layer, the borders 
separating different thematic classes are restrictive for any further segmentation [28]. In other words, 
the generated objects were not allowed to cross any of the borders of different land cover classes. We 
generated the objects based exclusively on the information of thematic layers by setting the weight of 
the image layer to 0 [28]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Image objects for change detection (Panel C) represent the intersections between 
the two classification maps (Panel A: 1999; Panel B: 2004). Paned D shows the change 

detection results obtained from the object-based approach. 

A B 

C D 
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Following the segmentation, a knowledge base of change detection rules was created to classify 
each object into one of the 16 change classes at the most disaggregated spatial level. The knowledge 
base of rules is a combination of typically “if-then” rules [19]. Most of the rules were created to reduce 
the errors that were propagated from the attribute and position errors in the two classification maps. In 
post-classification change detection, the attribute errors in the two classification maps and errors in 
spatial registration between the two classification maps lead to a significant overestimation of actual 
change [3, 35]. Object characteristics including land cover types for the two years, spatial relations 
(e.g. distance to neighbors and adjacency), and shape features were utilized to create rules for change 
detection. The choice of the relevant features and their threshold values were determined by combining 
expert knowledge and quantitative analyses [19]. We briefly describe the class hierarchy (See Figure 
3) and the associated features and rules used to identify the different types of land cover change here. 

We first separated the objects with no change from those with possible changes by comparing the 
land cover types obtained from the two thematic layers. Objects with the same types of land cover for 
the two years were identified as having no change (NoChange), whereas those with different types of 
land cover were considered as possibly being changed (PossibleChange). Those objects with land 
cover transformation that was considered as highly unlikely (see Table 1) were also classified as 
NoChange.   

Before we further classified the changes into different categories, rules were first created to reduce 
the edge errors and “salt and pepper” effects that were propagated through spatial inaccuracies and 
classification errors from the two classification maps. To reduce the edge errors caused by spatial 
misregistration, objects that were classified as PossibleChange were reclassified as NoChange, if their 
widths were less than 3 meters. The threshold value of 3 meters was determined based on the prior 
knowledge that the horizontal errors of Emerge data were estimated to be within 3 meters at the 90% 
confidence level. In addition, objects with areas of less than 10m2 were also reclassified as NoChange 
to reduce the “salt and pepper” effects.  

We then classified the objects of PossibleChange into 5 classes: ToBuilding, ToPavement, 
ToBaresoil, ToCV, and ToFV, based on the information of land cover type from the 2004 
classification layer. For instance, if the land cover type of an object was building in 2004, then the 
object were classified as ToBuilding. Rules varying by land cover type were then created to either 
further classify those objects into sub-categories or eliminate false detection errors. 

Each object classified as ToBuilding would be identified as being falsely detected and reclassified 
as NoChange if it satisfied one of the two conditions: 1) its shape area was less than 50m2 and it was 
not spatially adjacent to a building; or 2) its shape area was less than 50m2 and it was spatially 
adjacent to a building, but its compactness was larger than 2. The rules were created based on our 
knowledge that the changes to building would occur mainly in two ways: 1) development of a totally 
new building, with a minimum size of the footprint of 50 m2, which was determined by a statistical 
analysis on building sizes in the study area, and 2) expansion of an existing building, where the area 
could be less than 50 m2, but it should be adjacent to an existing building. Otherwise, an object would 
be classified as one of the 3 classes: BareSoil-Building, CV-Building, and FV-Building, based on the 
associated land cover type in 1999.  
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Figure 3. The class hierarchy for object-based post-classification comparison change detection. 

 
 
Objects of ToCV were first classified into three subclasses: Pavement-CV, BareSoil-CV, and FV-

CV. Changes to CV mainly came from the growth or expansion of existing tree canopies, occurring 
mostly at the edges or boundaries of existing trees and forest stands, where errors propagated through 
position and attribute errors from the classification maps were relatively large. Therefore, rules were 
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created to reduce commission errors for the classes FV-CV and Pavement-CV. Specifically, objects 
that were classified as FV-CV were reclassified as NoChange if their relative borders to CV were 
greater than 0.6, or their relative borders to CV were less than 0.3. Similarly, objects of Pavement-CV 
were reclassified as NoChange if their relative borders to CV were less than 0.3.  

Objects of ToFV were also first classified into three subclasses, Pavement-FV, BareSoil-FV, and 
CV-FV. Rules were then generated to identify falsely detected changes to FV. An object of CV-FV 
was reclassified as NoChange if it was not spatially adjacent to any of the three types of change, that 
is, ToBuilding, ToPavement, and ToBaresoil. This rule was created based on our observation that most 
of the changes from CV to FV occurred simultaneously with at least one of the three land cover 
conversions. Objects of Pavement-FV were identified as NoChange if they bordered buildings. This 
rule was created to reduce the commission errors caused by the classification errors of FV in the 2004 
classification map, where some of the shaded pavement was misclassified as FV.   

3.5 Change Detection Accuracy Assessment 

The expected accuracy of change detection can be roughly estimated by simply multiplying the 
accuracies of each individual classification [1, 4]. However, to be able to quantitatively evaluate the 
accuracy of the change maps, we need to generate stratified samples, and determine whether they are 
correctly classified [15, 36]. We applied this approach to evaluate the accuracies of the two post-
classification comparison methods, using reference data created from visual interpretation of the bi-
temporal Emerge image data. As the accuracy assessment required very intensive visual analysis, we 
aggregated the sub-change categories of each land cover type into one change class, when conducting 
the analysis. For instance, the three sub-classes of ToBuilding, BareSoil-Building, CV-Building, and 
FV-Building, were aggregated into one class ToBuilding. Consequently, the accuracy assessment was 
performed on 6 strata, including the class of NoChange and five change classes. 

For each of the two change maps, a stratified random sampling method was used to generate the 
random points in the software of Erdas ImagineTM (version 9.1) [30]. A total number of 400 random 
points were sampled, with 200 random points for the class of NoChange and at least 30 random points 
for each of the 5 change classes [31]. Error matrices that describe the patterns of mapped class relative 
to the reference data were used Overall accuracy, user’s and producer’s accuracies, and Kappa statistic 
obtained from the error matrices were used to assess the change detection accuracy [32].  

4. Results  

4.1 Classification and Change Detection Accuracy 

4.1.1 Classification Accuracy 

The classification accuracies derived from error matrices were listed in Table 2. The overall 
accuracies and the user’s and producer’s accuracies of individual classes were consistently high for the 
classification maps of the two years. The overall accuracies for 1999 and 2004 were 92.3% and 93.7%, 
respectively, and the Kappa statistics equaled 0.899 and 0.921. User’s and producer’s accuracies of 
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individual classes in 1999 ranged from 83.6% to 100%, whereas those in 2004 varied from 91.4% to 
97.7%. 

Table 2. Summary of the classification accuracies for 1999 and 2004. 

Land cover class 
1999 2004 

User’s Acc. 

(%) 
Producer’s Acc. 

(%)

User’s Acc. 
(%)

Producer’s Acc. 
(%)

Building 83.6 94.4 93.4 93.4 
CV 97.7 94.4 97.7 93.3 
FV 94.9 89.3 91.4 92.5 

Pavement 91.9 88.3 91.8 94.4 
Bare soil 90.0 100 95.9 94.0 
Overall 

accuracy 
92.3% 93.7% 

Kappa statistic 0.899 0. 921 

 

4.1.2 Change Detection Accuracy 

Table 3 lists the error matrix of the five change classes and the NoChange class for the change map 
obtained from the pixel-based post-classification comparison approach. User’s and producer’s 
accuracies for each of the classes, the overall accuracy, and Kappa statistic that were derived from the 
error matrix were also summarized in the table. The overall accuracy for the pixel-based post-
classification comparison approach was 81.3%, with Kappa statistic of 0.712. Except the classes of 
NoChange and ToBareSoil, the user’s accuracies of the other classes were relatively low. Particularly, 
the user’s accuracies for the classes of ToCV and ToFV were only 43.6% and 48.3%, respectively.  
The relatively large commission errors for the two classes were mostly caused by areas with no change 
being falsely identified as being changed. For instance, as shown in Table 3, more than half of the 
detected changes to CV (20 out of 39) were actually NoChange, while 24 out of 58 of the detected 
changes for FV were NoChange.  For all the classes except NoChange, the producer’s accuracies were 
higher than their corresponding user’s accuracies, ranging from 73.9% to 96.4%.  

The accuracies for the change map resulting from the object-based method were summarized in 
Table 4. The overall accuracy and Kappa statistic for the object-based approach were 90.0% and 
85.4%, respectively. Under the object-based approach, for most of the cases, both the user’s and 
producer’s accuracies of the individual classes were higher than those using the pixel-based method. 
The producer’s accuracies of all the classes were consistently high, ranging from 81.8% to 96.3%. The 
user’s accuracies for most of the classes were relatively high, except that for class of ToCV, with value 
of 61.1%. 
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4.2 Land cover and its change in the Gwynns Falls watershed from 1999 to 2004 

Figures 4 and 5 depict the classification results for the Gwynns Falls watershed in 1999 and 2004, 
respectively. Table 5 lists the area and proportion of each of the five land cover classes for the 
watershed in 1999 and 2004. The changes of the area and percentage for each of the five classes from 
1999 to 2004 were also summarized in Table 5. The table shows that the areas of bare soil and fine 
textured vegetation were greatly reduced, whereas the areas of building, pavement and coarse textured 
vegetation increased, with the increase of the area of pavement being the most. From 1999 to 2004, the 
proportion of impervious surface (building plus pavement) increased approximately 2.3%, while fine 
textured vegetation and bare soil decreased 1.3% and 1.2%, respectively. The coverage of coarse 
textured vegetation slightly increased, with value of 0.2%. 

 

Table 3. Error matrix of the six classes for the change map derived from pixel-based post-
classification comparison, with user’s and producer’s accuracy for each class, 

overall accuracy and Kappa statistic. 

Classified data 

Reference data 
Row 

Total 

User Acc. 

(%) 
NoChang

e 

ToBuildin

g 

ToC

V 

ToF

V 
ToPavement 

ToBareSoi

l 

NoChange 193 0 1 4 1 1 200 96.5 

ToBuilding 4 25 0 0 3 0 32 78.1 

ToCV 20 0 17 2 0 0 39 43.6 

ToFV 24 1 5 28 0 0 58 48.3 

ToPavement 0 4 0 0 33 0 41 80.5 

ToBareSoil 2 0 0 0 0 27 30 93.3 

Column Total 247 30 23 34 37 28 400  

Producer Acc. 

(%) 
78.1 83.3 73.9 82.4 89.2 96.4   

Overall accuracy 81.3% 

Kappa Statistics  0.712 

:            
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Table 4. Error matrix of the six classes for the change map derived from object-based post-
classification comparison, with user’s and producer’s accuracy for each class, overall accuracy and 

Kappa statistic. 

Classified data 
Reference data Row 

Total 

User Acc. 

(%) NoChange ToBuilding ToCV ToFV ToPavement ToBareSoil 

NoChange 192 1 1 2 1 3 200 96.0 

ToBuilding 0 27 0 2 0 1 30 90.0 

ToCV 11 0 22 3 0 0 36 61.1 

ToFV 5 0 1 38 1 0 45 84.4 

ToPavement 2 5 0 0 52 0 59 88.1 

ToBareSoil 1 0 0 0 0 29 30 96.7 

Column Total 211 33 24 45 54 33 400  

Producer Acc. (%) 91.0 81.8 91.7 84.4 96.3 87.9   

Overall 

accuracy 
90.0% 

Kappa Statistics 0.854 

 
Table 6 shows a matrix that was derived from the change detection results obtained from the object-

based method. The matrix details the land cover conversions from one land cover type to another 
between 1999 and 2004. In the matrix, the value in each of the cells was the amount of land that was 
converted from one land cover type to another. For instance, the value of 24.22 (the fourth row, second 
column) means that 24.22 hectares of bare soil were converted to buildings from 1999 to 2004. The 
column total sums the total amount of land that was converted to the land cover type given in the 
column heading, whereas the row total sums the amount of land that was originally of the type given in 
the row headings but was changed. The matrix shows that major land cover conversions occurred from 
fine textured vegetation to pavement and coarse textured vegetation, and from bare soil to fine textured 
vegetation and pavement, as well as from coarse textured vegetation to fine textured vegetation and 
pavement.   Altogether, 2244.9 hectares, or 13.1 % of the land within the Gwynns Falls watershed 
experienced land cover conversions in the five-year time period.  

Figure 6 depicts the land cover change map for the Gwynns Falls watershed from 1999 to 2004, 
which was obtained by using the object-based change detection approach.  The change map not only 
shows where land cover changes occurred, but also illustrates the nature of land cover conversions. 
This map reveals spatial patterns in land cover changes. For instance, although Table 6 indicates that 
the area of coarse textured vegetation increased in the five-year time period, the change map shows 
that the loss of forests was generally caused by the conversions of big chunks of forestland to 
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developed land (e.g. Figure 7, Panel A), whereas the gain of tree canopy mainly came from the growth 
or expansion of existing trees or forest stands, taking the form of disparate and numerous small pieces 
(e.g. Figure 7, Panel B). This type of information might have important implications for urban 
forestland management [37]. 

Table 5. Summary of land cover and its changes in the Gwynns Falls watershed from 1999 to 2004. 

Land cover 
1999 2004 Relative Change 

Area 

(ha) 

Proportion 

(%) 

Area 

(ha) 

Proportion 

(%) 

Area 

(ha) 

Proportion 

(%) 

Building 1989.5 11.6 2055.6 12.0 66.1 0.4 
CV 5876.9 34.3 5915.8 34.5 38.9 0.2 
FV 4839.0 28.2 4616.0 26.9 -223.0 -1.3 

Pavement 4122.8 24.0 4442.6 25.9 319.8 1.9 
Bare soil 321.0 1.9 119.2 0.7 -201.8 -1.2 

 
 
Table 6. Land cover changes from 1999 to 2004 (ha), derived from the object-based post-classification 
comparison method. 

 

 

 

 

 

 

 

 

 

 

                  From   
          To  

Building Pavement Bare soil CV FV Total 

Building      0 
Pavement   10.00 102.35 0.39 112.74 
Bare soil 24.22 112.49  3.88 133.07 273.66 

CV 30.36 93.56 25.47  115.09 264.48 
FV 11.55 226.45 36.40 197.18  471.58 

Total 66.13 432.50 71.87 303.41 248.55  
Relative Change 66.13 319.76 -201.79 38.93 -223.03  
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Figure 4. The classification result of the 5 land cover classes for the Gwynns Falls watershed in 1999. 

 

 

 



Sensors 2008, 8                            
 

 

1628

 
     
Figure 5. The classification result of the 5 land cover classes for the Gwynns Falls watershed in 2004. 
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Figure 6. The land cover change map for the Gwynns Falls watershed from 1999 to 2004, which was 

derived from an object-based change detection approach. 
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5. Discussions 

The object-based approach used in this study proved to be very effective for classification of high-
spatial resolution multispectral imagery in urban environments. The accuracies of the classification 
maps for the two years were consistently high relative to many other methods [38-39]. When high-
resolution imagery is used in heterogeneous urban landscapes, conventional pixel-based classification 
approaches that only utilize spectral information have very limited usefulness. This is because the 
spectral characteristics among different land cover types (e.g. building and pavement) could be very 
similar, while spectral variation within the same land cover type or even within the same object might 
be high [19, 40]. For instance, a single building may have a wide range of reflectance values in its 
constituent pixels based on differences in materials and shading. Under an object-based approach, the 
grouping of pixels into objects decreases the variance within the same land cover type by averaging 
the pixels within the objects. Further, as we are dealing with objects instead of pixels, we are able to 
employ spatial relations, shape metrics, and expert knowledge to aid in the classification, all of which 
are crucial in discriminating between different land cover types with similar spectral response 
characteristics [19]. 

The results from our analyses show that although the overall accuracy (81.3%) of the pixel-based 
change detection method was acceptable, the user’s and producer’s accuracies for certain classes (e.g. 
user’s accuracies of 43.6% for ToCV and 48.3% for ToFV, see Table 4) were too low.  

The relatively large commission errors for the classes ToCV and ToFV might be caused by the 
position and/or attribute errors that were propagated through the two classification maps [41]. As the 
accuracies of the two classes for the independent classification maps were relatively high (See Table 
2), the relatively large commission errors might be mainly caused by position errors [2, 35, 42]. 

Figure 7. Examples that change map shows different patterns of land cover changes. Panel A shows 
an example that a big chunk of forestland was converted to development, whereas pane B shows that 
the gain of tree canopy mainly came from the growth or expansion of existing trees and forest stands, 

with the form of numerous small pieces. Please refer to Figure 6 for legend information. 

A B
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Although the post-change detection refinements (i.e., smoothing window) reduced the errors caused by 
misregistration to some extent, our accuracy assessment on the change map confirmed the assumption 
that commission errors were largely caused by spatial inaccuracies, or spatial misregistration between 
the two classification maps. This was particularly true for those land cover types such as CV where 
changes to those land cover types mainly occurred at the edges or boundaries of the existing land 
cover.  

Accurate spatial registration is crucial for reliable and accurate assessment of land cover changes 
[1, 35, 42]. However, precise geometric registration of images is often very difficult to achieve [1], 
particularly for high-spatial resolution imagery. Although post-change detection refinements can be 
applied to reduce errors caused by misregistration to some extent [34], our results indicated that the 
commission errors caused by misregistration still were significant, particularly for tree canopy and fine 
textured vegetation (See Figure 8 as an example). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. A comparison of the change detection results of the same landscape using the 
two different approaches: the pixel-based post-classification comparison (Panel C) and 

the object-based post-classification comparison (Panel D). Panel A shows the 1999 
Emerge image for the landscape, while Panel B shows the one for 2004. 

A B 

C D 
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The results from our analyses indicated that an object-based approach provides a better means for 
post-classification change detection than a pixel-based method. Under the object-based approach, both 
the overall accuracy and the Kappa statistic greatly increased (See Table 4 and 5). In most of the cases, 
both the user’s and producer’s accuracies of the individual classes were significantly improved. In 
particular, the commission errors for most of the classes have been greatly reduced. For instance, the 
user’s accuracy for FV increased from 48.3% to 84.4%.  

A post-classification comparison approach based on image segmentation and rule-based change 
detection provides an effective way to incorporate spatial information and expert knowledge into the 
change detection process in turn reducing errors that could propagate from attribute and position errors 
of the two classification maps. Firstly, an object-based approach provides an effective way to 
incorporate prior knowledge on the spatial inaccuracies of the imagery (or classification maps) to 
reduce errors caused by spatial misregistration. Although post-classification comparison might be able 
to alleviate the problem of getting accurate registration of multidate images [1], our results indicated 
that spatial misregistration could introduce significant errors to change detection when applying a 
pixel-based post-classification comparison method to high-spatial resolution classification maps 
because pixels must be aligned perfectly to allow for pixel-based comparison (See Figure 8). 
Therefore, change detection techniques that require less precise registration of images are highly 
desirable [1]. Under an object-based post-classification approach, the minimum mapping units become 
larger, thus reducing the need for exact correspondence between layers [43]. Further, rules can be 
created to effectively reduce the significant effects of spatial inaccuracies based on the horizontal 
errors of the Emerge data. Our analysis of accuracy assessment suggested that change detection errors, 
particularly commission errors were greatly reduced with the object-based approach.  

Secondly, we are able to utilize spatial relations, object features, and expert knowledge for change 
detection. Rules that vary by class can be developed to reduce commission and omission errors based 
on the characteristics of different classes. For instance, we could create rules for building changes 
using our knowledge of building areas, as illustrated in this study. Furthermore, prior knowledge of the 
classification accuracies of individual classes can be effectively integrated into the change detection 
process to reduce errors, particularly, commission errors that could propagate from the attribute errors 
of the classification maps. For instance, based on the discovery that the classification error for 
buildings in 1999 was mainly caused by part of the buildings being misclassified as pavement, and 
based on the fact that there are almost no actual transitions from pavement to buildings in our study 
area, we created a rule to disallow conversions of pavement to buildings.    

Both the object-based and pixel-based methods have limited success in change detection for the 
class of CV. With the pixel-based method, the user’s and producer’s accuracy for the class ToCV were 
only 43.6% and 73.9%, respectively. Under the object-based approach, although the producer’s 
accuracy of ToCV was greatly improved to 91.7%, the user’s accuracy was still relatively low, with 
value of 61.1%. The relatively large commission errors were mainly caused by two reasons. First, most 
of the changes to CV occurred at the edges or boundaries of existing trees and forest stands, where 
registration errors and edge effects could cause great commission errors in determination of change vs. 
no change [1, 15, 35]. Secondly, along the edges and boundaries of existing trees and forest stands, the 
accuracies of classification maps were relatively low because of the mixed-object effects, shadows and 
inaccuracies of ancillary data used in the classification [19]. Therefore, we found it was very difficult 
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to create effective rules to distinguish real changes from errors caused by misregistration and 
misclassification. 

We also should note that an object-based approach is more computationally intensive than a pixel-
based method. While a pixel-based method is relatively straightforward and easily performed, under an 
object-based approach, the development of the knowledge-base could be very complex, and the 
effectiveness of the rules highly depends on expert inputs and availability of information on the 
classification maps and change classes. We found that the accuracy analysis on the pixel-based change 
map could provide valuable insights of detection errors, based on which effective rules could be 
developed to eliminate those errors in an object-based approach. Therefore, a combination of an 
object-based approach with a pixel-based method might provide an optimal change detection technique 
for describing changes in land cover in terms of quantity, location, shape and pattern, and transitions in 
urban environments. 
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