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Abstract: Vegetation indices (VIs) are among the oldest tools in remote sensing studies. 
Although many variations exist, most of them ratio the reflection of light in the red and 
NIR sections of the spectrum to separate the landscape into water, soil, and vegetation. 
Theoretical analyses and field studies have shown that VIs are near-linearly related to 
photosynthetically active radiation absorbed by a plant canopy, and therefore to light-
dependent physiological processes, such as photosynthesis, occurring in the upper 
canopy. Practical studies have used time-series VIs to measure primary production and 
evapotranspiration, but these are limited in accuracy to that of the data used in ground 
truthing or calibrating the models used. VIs are also used to estimate a wide variety of 
other canopy attributes that are used in Soil-Vegetation-Atmosphere Transfer (SVAT), 
Surface Energy Balance (SEB), and Global Climate Models (GCM). These attributes 
include fractional vegetation cover, leaf area index, roughness lengths for turbulent 
transfer, emissivity and albedo. However, VIs often exhibit only moderate, non-linear 
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relationships to these canopy attributes, compromising the accuracy of the models. We 
use case studies to illustrate the use and misuse of VIs, and argue for using VIs most 
simply as a measurement of canopy light absorption rather than as a surrogate for 
detailed features of canopy architecture. Used this way, VIs are compatible with "Big 
Leaf" SVAT and GCMs that assume that canopy carbon and moisture fluxes have the 
same relative response to the environment as any single leaf, simplifying the task of 
modeling complex landscapes. 
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1. Introduction 
 

Vegetation indices (VIs) to monitor terrestrial landscapes by satellite sensors were first developed 
in the 1970s and have been highly successful in assessing vegetation condition, foliage, cover, 
phenology, and processes such as evapotranspiration (ET) and primary productivity, related to the 
fraction of photosynthetically active radiation absorbed by a canopy (fPAR) [1-3]. VIs are robust 
satellite data products computed the same way across all pixels in time and space, regardless of surface 
conditions. As ratios, they can be easily cross-calibrated across sensor systems, ensuring continuity of 
data sets for long-term monitoring of the land surface and climate-related processes. For example, 
there is a global record of Normalized Difference Vegetation Index (NDVI) data since 1981from the 
NOAA Advanced Very High Resolution Radiometer (AVHRR) that has contributed to global climate, 
ecosystem, and agricultural studies. A new generation of VI data from the Moderate Resolution 
Imaging Spectrometer (MODIS) on the Terra satellite has been inter-calibrated with AVHRR NDVI, 
and provides near daily coverage of the earth at 250 m pixel resolution [3]. 

Kerr and Ostrovsky [1] and Pettorelli et al. [2] have recently reviewed the numerous applications of 
satellite VIs in ecological studies. VIs are now indispensable tools in land cover classification, climate- 
and land-use-change detection, drought monitoring, and habitat loss, to name just a few applications. 
In this paper we briefly review the theoretical basis for VIs and give some examples of their use and 
misuse in two particular applications, estimating ecosystem carbon and moisture fluxes, important 
topics in global change studies.  

Numerous studies have shown that satellite-derived VIs are optical measures of canopy 
"greenness", a composite property of leaf chlorophyll content, leaf area, canopy cover and structure. 
However, VIs have also been employed as proxies for individual, and often land-cover-dependent, 
vegetation parameters such as fractional vegetation cover (fc), leaf area index (LAI), roughness lengths 
for turbulent transfer, albedo, emissivity and other biophysical properties of the landscape. These 
parameters are often required in Soil-Vegetation-Atmosphere Transfer (SVAT), Surface Energy 
Balance (SEB), and Global Climate Models (GCM) that attempt to predict surface fluxes based on 
physical models. Unfortunately, these canopy attributes are often only moderately correlated with VIs 
or their derivatives, and remote sensing models that use VIs to estimate these parameters are subject to 
error and uncertainty.  
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On the other hand, networks of flux towers now provide real-time, plot-level estimates of carbon 
assimilation and moisture and energy fluxes in major biome types around the world. We give recent 
examples in which VIs have been combined with data from flux towers and meteorological stations to 
accurately scale carbon and moisture fluxes over large landscape units, circumventing in some cases 
the need to solve complex SVAT or SEB equations with limited input data.  

It seems surprising that VIs are so closely related to carbon and moisture fluxes, because fluxes are 
controlled in part by stomatal resistance, which can vary considerably over short time periods. 
However, over longer time periods (weeks or months), plants tend to adjust their foliage density to 
match the capacity of the environment to support photosynthesis (the Resource Optimization Theory) 
[4]. Leaves are expensive to produce and maintain, and when plants are nutrient-limited, water-
stressed, or exposed to other unfavorable conditions, they reduce their leaf area to use resources 
efficiently, although full optimization is never achieved [5]. Hence, foliage density measured by time-
series VIs can be a powerful tool in measuring the physiological status of vegetation.  

Our goal is to point the way towards using VIs directly in scaling carbon and moisture fluxes rather 
than as proxies for canopy state attributes that are difficult to measure [6]. This is not a comprehensive 
review, as many dozens or hundreds of papers have been published on most of the topics covered. We 
have attempted to emphasize a few important historical papers, recent reviews, or recent papers that 
provide the reader an entry into literature on each topic. We illustrate the use and misuse of VIs with 
data from our studies of riparian vegetation in the southwestern U.S. 
 
2. What VIs Measure 
 

Although many different VIs have been formulated, most of them are related to the Simple Ratio 
(SR) [7]: 

SR = ρΝΙΡ/ρRed                                           (1) 

The most-used VI is the NDVI [1,3]: 

NDVI = (ρNIR - ρRed)/(ρNIR + ρRed)                        (2) 

where ρNIR and ρRed are reflectance values of Red and Near Infrared light received at the sensors. 
The NDVI was first formulated by Rouse et al. [8] and applied to a wide range of practical remote 
sensing applications in a series of studies by Tucker and colleagues in the 1970s and 1980s, e.g. [9]. 
The SR and NDVI are built on the observation that chlorophylls a and b in green leaves strongly 
absorb light in the Red, with maximum absorption at about 690 nm, while the cell walls strongly 
scatter (reflect and transmit) light in the NIR region (about 850 nm) [10]. This results in a strong 
absorption contrast across a narrow wavelength band of 650 - 850 nm, captured by the NDVI and other 
VIs. NDVI and related VIs are functional variants of the SR. NDVI normalizes values between -1 to 
+1; dense vegetation has a high NDVI, while soil values are low but positive, and water is negative 
due to its strong absorption of NIR. 

Tucker [10] tested various combinations of the red, NIR, and green bands to predict biomass, water 
content, and chlorophyll content of grass plots. The NDVI was strongly correlated with chlorophyll 
content and crop characteristics that were directly related to chlorophyll content, such as green 
biomass and leaf water content. Monteith and Unsworth [11] conducted a theoretical analysis showing 
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that the SR and by extension other VIs are uniquely related to the amount of incident light reflected 
and therefore absorbed by a canopy, assuming a low and constant value for soil absorption. Myneni et 
al. [12] showed that NDVI was near-linearly related to the chlorophyll content of single soybean 
leaves and curvilinearly related to the chlorophyll content of soybean canopies (because surface leaves 
intercept more light than leaves deeper in the canopy).  

Sellers [13] used a canopy radiative transfer model to show that NDVI is near-linearly related to 
area-averaged net carbon assimilation and plant transpiration, even at different values of fc and LAI 
over an area of interest. Hall [14] analyzed the performance of VIs in estimating canopy conductance 
and transpiration at different scales of measurement over the Konza Prairie in the Great Plains, U.S. 
Data from ground flux towers were scaled by aerial and satellite imagery to progressively larger 
landscape units. As in the small-scale studies cited above, they found that NDVI was near-linearly 
related to canopy carbon assimilation and transpiration and that NDVI values were nearly scale-
invariant in going from ground to aerial to satellite measurements. Thus, even in a mixed scene 
(providing there is no surface water and soil effects are minimal) a VI provides a true measure of area-
averaged photosynthetic capacity based on light absorption by chlorophyll, and therefore of processes 
such as photosynthesis and plant transpiration that are determined by stomatal conduction [13,14]. 
(Photosynthesis and transpiration are mechanistically linked because carbon dioxide and water 
molecules enter and exit through stomata on the leaves and stems).  

Similar findings have been reported for other VIs. For example, the Enhanced Vegetation Index 
(EVI) [3] is calculated as: 

EVI = 2.5 x (ρNIR - ρRed)/(1+ ρNIR + (6 x ρRed - 7.5 x ρBlue)   (3) 
where the coefficient "1" accounts for canopy background scattering and the blue and red coefficients, 
6 and 7.5, minimize residual aerosol variations. The EVI is more functional on NIR reflectance than on 
Red absorption, and therefore it does not ”saturate" as rapidly as NDVI in dense vegetation, and it has 
been shown to be highly correlated with photosynthesis and plant transpiration in a number of studies 
[3]. The EVI is one of the two VIs available from the MODIS sensors and it is increasingly used in 
phenological, productivity and evapotranspiration (ET) studies, as documented in Section 4. Where 
soil effects on NDVI are a problem, alternative VIs such as the Soil Adjusted Vegetation Index or the 
Scaled Difference Vegetation Index can be used [e.g., 15]. 
 
3. VIs as Proxies for Other Canopy Attributes  

 
3.1 VIs and LAI 
 

Leaf Area Index (LAI) values are required in many SVAT models to quantify the interception of 
light by the canopy. The canopy is conceptualized as a series of absorbing layers of leaves, each of 
which attenuates a fraction of the incident radiation according to the Beer-Lambert Law [16]. In early 
crop studies, LAIs were used as proxies for canopy light absorption, because fPAR itself was difficult 
to measure [17,18]. In the 1980s, it became feasible to measure photosynthesis and transpiration in the 
field on individual leaves enclosed in leaf chambers [19]. SVAT models were developed to scale these 
leaf-level measurements to whole canopies and stands of plants [16], and these models were then 
adapted to remote sensing studies [20]. LAIs were needed to scale leaf-level measurements to 
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complete canopies. VIs or their derivatives are now often used as proxies for LAI in remote-sensing-
based SVAT and SEB models, because LAI cannot be measured directly by satellite sensors [21]. In 
some applications, VIs are combined with look-up tables of vegetation classes to improve the accuracy 
of LAI predictions [22]. Multiple images taken at different times and over different sensor view angles 
can be combined to estimate leaf angles and LAI by Bidirectional Reflectance Factor (BRDF) models, 
which provide structural information about a canopy [23]. However, BRDF models of a canopy can be 
indeterminate, in that different combinations of LAI and leaf angles can produce similar results [24] 
(see below). Satellite estimates of LAI can be accurate in some cases [25] but off by a factor of 2 
compared to ground estimates in other cases [26]. Furthermore, LAI is difficult to measure on the 
ground, and optical and leaf-harvesting methods often produce different results [27,28].  

LAI is a mathematical construct that does not have a direct relationship to fPAR or processes that 
depend on fPAR [11]. LAI is usually defined as the one-sided area of leaves in a canopy per unit 
ground area of canopy cover but non-flat leaves complicate the definition [29]. LAI is related to light 
interception by a canopy (Ri) by: 

Ri = Rs(1-exp-kLAI)                                        (4) 

where k is a factor that accounts for leaf angles and other factors that affect absorption of Rs within a 
canopy [11]. Plants with relatively vertical leaves (erectophiles) typically absorb less light per unit leaf 
area than plants with relatively horizontal leaves (planophiles). The coefficient k also depends on the 
arrangement of plants within a stand, because isolated plants receive light from all sides of their 
canopy whereas a dense stand of plants is only illuminated at the top of the canopy. The fraction of 
light absorbed by the canopy (fPAR) depends not only on Ri but also on the spectral properties of the 
leaves. Some leaves have reflective surfaces to minimize heat gain while others absorb nearly all of the 
incident radiation between 400 and 700 nm. Hence, LAI can be well correlated with NDVI for single 
plant species grown under uniform conditions [30], but not for mixed canopies, which often occurs in 
remote sensing studies in which a single pixel can contain several landscape units.  

As mentioned, some remote sensing methods to estimate LAI do include estimates of average leaf 
angle and canopy geometry for particular vegetation types. However, the complexity of using LAI to 
quantify biophysical processes is illustrated by studies of riparian vegetation on Colorado River in the 
U.S. [31-36]. Four plant species dominate the riparian corridor, and grow in mixed stands that cannot 
be easily resolved into individual species even by high-resolution aerial photography and not at all by 
multiband satellite imagery. Figure 1 shows the leaf structure and light absorption properties of the 
four species. Arrowweed is an extreme erectophile, with near-vertical leaves often closely appressed to 
the stem; saltcedar has cylindrical, needle-like leaves, and willow and cottonwood are broad-leafed 
plants. Field measurements of fPAR, LAI and NDVI show that k in Equation (3) varies from 0.15 for 
arrowweed to 1.25 for cottonwood, and as a consequence, the LAI required to produce 50% fPAR 
varies from 4.62 to 0.55. Figure 2 shows LAI, NDVI and ET of these species compared to alfalfa, a 
common crop plant in irrigation districts along the river. Satellite images typically encompass areas of 
riparian vegetation as well as agricultural fields. All species had approximately the same LAI, but 
NDVI values varied by species as predicted by differences in k values, and ET was more closely 
related to NDVI than to LAI. Clearly, LAI alone is not enough to characterize light-absorption by 
these species. 
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Figure 1. Leaf shapes and angles in the canopies, the LAI at which 50% light absorption 
occurs, and k values for four riparian plant species growing in mixed stands in the 
Colorado River corridor (from data in [33]). 

 
Gamon and Qui [37], reviewing remote sensing applications in ecology, pointed out that the use of 

LAI in SVAT models is partly historical, because photosynthesis and transpiration were formerly 
measured mainly at the leaf level then scaled up to canopies. This required an estimate of how many 
layers of leaves were in the canopy and other details of canopy architecture. Today, the most widely 
accepted measures of plot-level photosynthesis and transpiration are from flux towers (see Section 4). 
These towers unobtrusively measure moisture and carbon fluxes from canopies to the atmosphere over 
fetches of several thousand square kilometers. Scaling these plot level measurements to larger 
landscape units by remote sensing does not require knowledge of LAI. Gamon and Qui [37] suggested 
that the traditional LAI could be replaced by "effective leaf area index" as measured by VIs at the top 
of the canopy. 
 
3.2 VIs and fc 
 

Fractional vegetation cover is also required in many SVAT and SEB models that divide the 
landscape into areas of vegetation and bare soil [6, 38-40]. These models use different methods to 
estimate carbon and moisture fluxes from vegetation and bare soil and require an estimate of the 
fraction of the landscape that is vegetated. For example, SEB models of ET use the difference between 
air temperature and soil temperature (measured by satellite sensors) to estimate bare soil evaporation, 
but they use the Priestly-Taylor formula for potential ET to estimate transpiration from vegetation [38-
40]. Typically, a VI is used to partition the landscape into bare soil and vegetation. NDVI values for a 
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scene (satellite image) are usually scaled between 0 and 1, representing bare soil (0) and 100% cover 
(1) to get fc for a given pixel or area of interest in the scene. In some models, linear scaling is used, and 
in others the scaling function is non-linear and is adjusted to represent the vegetation type of interest. 
Some models require both LAI and fc, and these are often both estimated by VIs [39]. Ground-based 
information on vegetation type and canopy characteristics can be included to improve the estimates. 
Sometimes average leaf angles for a particular type of landscape are used to predict both fc and LAI 
from VIs [39].  

 
Figure 2. Examples of LAI, NDVI and evapotranspiration (ET) of four riparian species 
from the Colorado River, with alfalfa for comparison. NDVI, LAI and ET are from 
natural stands of plants at 100% cover. From data in [31-36]. Alfalfa is from a field along 
the Colorado River in Blythe, CA, (HayDay Farms, Inc., Nagler et al., unpublished data). 
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Carlson and Ripley [41] showed that for partially vegetated scenes with LAI in the range of 1-3, 
VIs were much more closely related to fc than to LAI of clumped vegetation, and that the relationship 
between NDVI and fc was non-linear. They showed that for partially vegetated scenes of uniform 
vegetation type, VIs were a good measure of fc. Other studies have also reported strong linear [42] or 
non-linear [43] relationships between VIs and fc in a variety of landscape types. However, Figure 2 
points out a potential practical problem in using VIs to estimate fc over mixed scenes. At 100% cover, 
different plant species may have different VIs due to differences in chlorophyll content and canopy 
architecture. Figure 3 shows an ETM+ scene containing the same riparian vegetation and agricultural 
vegetation as in Figure 2 along the Colorado River. Pixels were converted to NDVI values. Fractional 
cover, determined on high-resolution aerial photographs, was nearly 1.0 for each plant stand 
highlighted in the figure. However, NDVI values varied among plant types, as expected from Figure 2, 
and estimates of fc based on NDVI differed by as much as 40% among species. Alfalfa NDVI was 
much higher than the riparian species, because fertilized crops tend to have higher chlorophyll content 
than nitrogen-limited plants in natural ecosystems, due to the large nitrogen cost of chlorophyll and 
chlorophyll-binding proteins.  

 
Figure 3. NDVI map of a stretch of the Colorado River encompassing agricultural fields 
and the Havasu National Wildlife Refuge. NDVI values are given for an alfalfa field, a 
dense stand of saltcedar, a mixed arrowweed-saltcedar stands, and an area dominated by 
willow trees, all near 100% cover as determined on aerial photographs. From data in [35]. 

 

 
 

Figure 4 is a scatter plot showing the relationship between NDVI and fc for riparian vegetation 
along the Colorado River (agricultural fields excluded). High-resolution (0.3 m) aerial images were 
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obtained with a DyCam digital camera having Red, Blue and NIR bands. Individual shrubs and bare 
soil were visible on the images, and a point-intercept method was used to visually determine fc on 25 
images dominated by cottonwood, saltcedar or arrowweed. Then NDVI was determined for each 
image. Although there was a clear linear relationship between NDVI and fc (r2 = 0.81) for the 
combined images, each species produced a separate regression line corresponding to different NDVI 
values for full cover shown in Figure 2. Arrowweed, an erectophile, was clearly different from 
saltcedar and cottonwood. Hence, in mixed scenes, attempts to derive fc by NDVI would produce bias 
according to the dominant species present in a given image or pixel. A single satellite pixel often 
encompasses mixtures of plant types and bare soil. 
 

Figure 4. Relationship between NDVI and fractional vegetation cover for high-resolution 
aerial DyCam images obtained on the Lower Colorado River. Scenes dominated by 
arrowweed, cottonwood or saltcedar were selected from a larger collection of images. 
The regression line of best fit for the combined data are given, as well as lines of best fit 
for individual species. From data in [33]. 
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Errors in estimating fc or LAI by NDVI do not necessarily lead to proportionately large errors in 

estimating energy fluxes by two-source models. If a pixel is fully vegetated but has low NDVI, it is 
treated as a partially vegetated pixel in two-source models, with resulting lower estimated latent heat 
flux than a pixel with high NDVI, a situation close to reality. In a sensitivity analysis of two versions 
of the two-source Atmosphere-Land Exchange Inverse (ALEXI) ET model, forced variations in LAI of 
20% produced variances in estimated sensible heat flux of 10-15% for the so-called "parallel model" 
compared to 3-7% for the improved "series model", which corrected for clumping of vegetation and its 
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effect on heat flux from partially vegetated surfaces [43]. Model performance can also be improved by 
including ground data on LAI and fc into the model, when such information is available.  

However, given the complexities of actual mixed landscapes, estimates of LAI and fc from VIs and 
their transformations must be regarded as only approximations for many applications. Furthermore, 
they are difficult to validate with ground data. Fractional cover can be estimated through aerial 
photography or on the ground by transect methods [35] but LAI differs among species and changes 
continuously over a growing season, and actual LAI at validation sites is often poorly known.  
 
3.3 VIs and Roughness Lengths, Emissivity and Albedo  
  

Roughness length (z0) in meteorology is a measure of the roughness of the surface over which wind 
is blowing, and it is related to the height and shape of the surface objects that obstruct horizontal flow 
and convert it to turbulent flow [11]. It is defined as the height above the ground where the logarithmic 
wind profile goes to zero, and it is approximately 0.1 times the height of the surface elements (e.g., 
plants). It is a critical term in many SVAT and SEB models because flux rates of mass and energy in 
and out of canopies are dependent on turbulent flow, and these models require knowledge of z0. Many 
remote-sensing SEB and SVAT models use VIs to estimate z0, either with [e.g. 39,43] or without [e.g. 
44] supplementary ground information. For example, the Two Source Time Integrated Model remote 
sensing model for surface energy fluxes in [39,43] combines NDVI with knowledge of plants heights 
(when available) to compute fc and z0. On the other hand, Surface Energy Balance Algorithm model 
for surface energy fluxes [44] sometimes assumes a fixed relationship between z0 and LAI, which is 
estimated by NDVI. 

Unfortunately, the same reservations on using VIs to estimate LAI and fc apply to roughness 
lengths. While vegetated surfaces have greater roughness lengths than bare soil, VIs do not adequately 
capture differences in canopy heights among different vegetation types in mixed scenes [45]. For 
example, a field of alfalfa 0.5 m tall (e.g., in Figure 3) will have a roughness length of approximately 
0.05 m, whereas a saltcedar stand 5 m tall has a roughness length of 0.5 m, 10 times greater; yet, 
Figure 3 shows that a typical alfalfa field has 50% higher NDVI than saltcedar, which could lead to a 
large error in estimating turbulent flow by NDVI over a mixed riparian scene containing both 
agricultural fields and natural vegetation. As mentioned, corrections can be made by supplying plant 
height data into SEB models but given the complex canopy structure of mixed landscapes, the 
estimates are approximations. 

Emissivity (ε) is the ratio of energy radiated by an object to that radiated by a black body at the 
same temperature, in which ε = 1for a perfect black body radiator [11]. This relationship is used to 
measure land surface temperature by satellite sensors in the thermal infrared bands; however, plant 
canopies and soils are not perfect black body objects (ε < 1.0), and, therefore, estimates of ε are needed 
to correct satellite-derived land surface temperatures in SEB models that estimate ET by the difference 
between air temperature and land surface temperature. Albedo is a measure of the fraction of incident 
radiation diffusely reflected from an object [11], and it is required to calculate net radiation absorbed 
by the land surface and for other model parameters. Bare soil and vegetation have distinctly different 
values for emissivity and albedo. Hence, remote sensing models often use transformations of NDVI or 
other VIs to estimate these parameters. For example, the SEBAL model [44] uses different 
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transformation of NDVI for fc, albedo, roughness length and ε. Emissivity and albedo are closely 
correlated with VIs for the vegetated fraction of the landscape, but soils can differ more substantially 
in the relationship between NDVI, albedo and ε [46-48]. Models that use VIs to estimate these 
parameters generally first partition the landscape into bare soil and vegetation using VIs, then assign 
values for emissivity and albedo to each class, e.g. [44]; hence, they are subject to the same types of 
errors inherent in using VIs to estimate fc.  
 
4. Combining ground data and VIs to scale biophysical processes over large areas 
 
4.1 Flux Towers and Other Methods to Measure Carbon Assimilation and ET at Plot Scales of 
Measurement 
 

An alternative to solving complex SVAT and SEB equations with limited remote sensing data is to 
combine remote sensing measurements with ground data. When ground data are available, remote 
sensing serves as a scaling tool rather than as a complete physical model. Before the 1990s, carbon and 
moisture fluxes were difficult to measure at scales relevant to agriculture or ecology. As mentioned, 
leaf-level measurements were available in the 1980s [19], but it is a daunting task to scale these 
measurements to whole canopies and larger landscape units. From the 1990s to the present, an 
increasing number of micrometeorological flux towers have been deployed in agricultural and natural 
ecosystems around the world [49-51]. These flux towers are now organized into networks such as 
Euroflux, Ameriflux, MEDEFLUX (the Mediterranean region), AsiaFlux, and OzNet (Australia). In 
1997 FLUXNET was formed as a “partnership of partnerships” to compile long-term measurements of 
carbon dioxide, water vapor and energy flux into high-quality data sets for ecosystems around the 
world. FLUXNET currently contains 400 towers, and it has the specific goal of validating the remote 
sensing ecosystem products from the Terra satellite [50].  

The existence of flux tower data simplifies the job of scaling plant-related processes over large 
landscape units. As top-of-canopy measurements, flux towers do not require knowledge of LAI, fc, or 
details of canopy architecture to produce results, and the measurement footprint of flux towers at least 
partially overlaps the pixel size of daily-return satellites (e.g., 250 m for MODIS). 

Satellite measurements are spatially continuous at their pixel scale but temporally provide only 
daily or less frequent snapshots of data, whereas tower-based flux data are temporally continuous at 
their recording intervals (typically 20-30 minutes), but are essentially point measurements spatially. 
Hence, combined remote sensing and flux tower data can provide opportunities to upscale the tower 
data and to constrain the satellite data. Satellites can uniformly sample the entire study area of interest, 
whereas flux towers seriously under-sample the landscape spatially, but they provide detailed data on 
fluxes as well as micrometeorological data at frequent intervals over the course of a day. 
 
4.2 What Flux Towers Measure and Sources of Error in Flux Towers 
 

Flux towers measure, among other things, the individual components of the Surface Energy 
Balance: 
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Rn - G - H - λET = 0                                      (5) 

where λ is the latent heat of evaporation of water; Rn is net radiation flux (Rs minus outgoing short 
wave and long wave radiation); G is soil heat flux; and H is sensible heat flux to the atmosphere (units 
are W m-2)(flux tower methods are reviewed in [51,52]). Flux towers also measure fluxes of carbon 
dioxide and other gasses in an out of canopies. 

Two types of towers have been widely employed: Bowen Ratio Energy Balance (BREB) and eddy 
covariance (EC) towers. BREB towers measure gradients of temperature, moisture and carbon dioxide 
at two points in the turbulent boundary layer over a canopy at (typically) 2 second intervals and data 
are averaged over 20 minute intervals. Gradients measured over the canopy cannot be used to directly 
compute fluxes because the transfer coefficients are not known. However, if transfer coefficients for 
sensible heat and moisture are assumed to be equal their ratio can be calculated (the Bowen ratio) [53]: 

β = γ[Tl - Tu]/[el - eu] = H/λET                               (6) 

where γ is the pyschrometric constant, Tl and Tu are upper and lower temperatures and el and eu are 
lower and upper moisture contents. Then Equations (5) and (6) can be combined to solve for λET: 

λET = (Rn - G)/(β + 1)                                      (7) 

BREB towers have net radiometers and soil heat flux plates to measure Rn and G; they can also be 
used to measure gradients in carbon dioxide and other gasses to determine their fluxes in and out of 
canopies, assuming their transport coefficients are the same as for moisture and sensible heat. 

EC towers are instrumentally more sophisticated than BREB towers [52]. They contain sensitive 
instruments that measure carbon dioxide, moisture, air temperature and the vertical components of 
wind speed at a single point over the canopy. Data are collected 20 times per second and are averaged 
every 30 minutes. Over the longer time scale, the vertical component of wind speed is expected to be 
zero over a level surface, but at the shorter time scale eddies of air can have a net upward or downward 
velocity. If, on average, upward eddies have higher moisture content than downward eddies, then a net 
flux of water out of the canopy is measured over integrated 30 minute data intervals; on the other hand, 
if downward eddies have higher carbon dioxide content than upward eddies, a net flux of carbon into 
the canopy is measured. EC towers provide direct measurements of fluxes. Additional instruments 
measure wind speed, net radiation, soil heat flux and other parameters required in detailed SVAT 
models and to solve Equation (5). 

Flux measurements are subject to several sources of error. They are point measurements, but they 
require a uniform fetch of vegetation of several thousand square meters (e.g., 50 m x 50 m) around the 
towers to produce results that are representative of a particular ecosystem, and these conditions are 
often not perfectly met in natural landscapes. Instrument error and data drop-out introduce errors of 
about 20% when different towers are intercalibrated at the same site [52]. Furthermore, when EC 
results are compared to BREB results, EC moisture flux estimates are often 10-30% lower than energy 
closure (BREB) results. EC results are often increased to account for this “closure error” [54], but the 
best way to achieve closure, and the cause of the closure error, are still unclear [51,52].   

Flux towers measure net ecosystem rates of carbon dioxide and moisture fluxes in and out of 
canopies. Net carbon fluxes are due to net uptake by plants in photosynthesis during the day, release of 
carbon dioxide by plants at night, and by soil respiration and litter decomposition. Net moisture fluxes 
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are due to bare soil evaporation plus plant transpiration minus precipitation and condensation. Top-of 
canopy flux towers can be combined with under-canopy measurements to calculate soil and understory 
respiration [55] and plant transpiration can be measured with sap flow sensors [56], which measure the 
flow of water through plant stems. Natural isotopes of oxygen and hydrogen can also be used to 
distinguish between evaporation and transpiration in ET [57]. Hence, the individual components of 
carbon and moisture fluxes can be measured at tower stations. 

Flux tower and sap flow data can also test cause-and-effect relationships between meteorological 
and soil variables and plant performance that can inform ecophysiological studies. For example, it is 
possible to invert the Penman-Monteith equation for ET, to obtain frequent estimates of stomatal 
conductance (or resistance) in response to stress factors under natural conditions over the course of 
hours, days, weeks, seasons and years [58]. An example using three of the plant species shown in 
Figures 1-4 is in Figure 5. Sap flow was measured in plants for seven days under unstressed conditions 
and correlated with micrometeorological data to produce a stomatal resistance model for each species 
[36]. Then the plants were subjected to salt stress and dry-down, and measured stomatal resistance was 
compared to modeled values over three subsequent days. All three species had similar patterns of 
transpiration and stomatal resistance under unstressed conditions, but the two mesic trees, cottonwood 
and willow, showed increased stomatal resistance in response to stress, whereas saltcedar, which is 
drought- and salt-tolerant, did not increase its stomatal resistance. The type of experiments illustrated 
in [36] and [58] were formerly only possible over short intervals on individual leaves enclosed in leaf 
chambers, but they now can be performed unobtrusively on whole plants [36] and mixed stands of 
plants [58]. 
 
4.3 Examples of Combining VIs and Flux Tower Data to Estimate Carbon Fluxes 
 

Measuring landscape-level carbon fluxes is essential in global change studies [e.g., 50]. Gross 
Primary Production (GPP) is defined as the amount of CO2 fixed in photosynthesis, while Net Primary 
Production (NPP) is defined as GPP minus plant respiration [59]: 

NPP = GPP – (Rleaves + Rroots + Rwoody tissues)                 (8) 

GPP can be estimated by satellite data based on the linear relationship between fPAR and VIs, for 
example NDVI: 

GPP = LUE x fPAR x PAR = ca. LUE x NDVI x PAR            (9) 

where LUE is Light Use Efficiency, the PAR conversion efficiency [59]. LUE values vary widely with 
vegetation type and environmental conditions. Currently, LUE and the respiration terms in (8) are 
estimated by modeling, using assumed values of parameters for broad biome types. For example, 
MODIS products include a combined, NDVI-based, LAI – fPAR term that is combined with 
meteorological variables and look-up tables of specific leaf area and respiration values for general 
biome types (evergreen needleleaf forest, deciduous broadleaf forest, shrubland, savanna, grassland, 
and cropland) to estimate GPP and NPP [59-61].    

These models can be validated and improved by combining them with flux tower data [62-64]. Flux 
towers can estimate GPP and NPP separately by comparing daytime NPP with nighttime respiration 



Sensors 2008, 8                    
 

2149

and by other techniques, and LUE can also be calculated directly from canopy carbon fluxes divided 
by net radiation [50,51].  

Time-series VIs and tower data have been successfully combined in a number of recent studies of 
ecosystem carbon exchange. Wylie et al. [65] showed that NDVI from AVHRR could be calibrated 
with BREB flux tower data to provide accurate 14-day estimates of daytime and nighttime carbon 
exchange from a sagebrush-steppe ecosystem in Idaho, and suggested that portable flux towers could 
be deployed to increase the spatial coverage of tower data. Using a hand-held radiometer in grazed and 
ungrazed prairie sites, Frank and Karn [25] found strong linear relationships between NDVI and 
carbon dioxide and moisture fluxes measured at towers, and strong but non-linear relationships 
between NDVI and LAI and standing biomass. They concluded that NDVI has the potential for 
predicting carbon and water fluxes in semiarid grasslands and shrublands. 

Huete et al. [66] found a consistent linear relationship between seasonal MODIS EVI and tower 
calibrated GPP in intact rainforests and rainforest land converted to pasture and agriculture in the 
Amazon. In relation to tower measured GPP, the MODIS EVI did not saturate in such high biomass 
tropical rainforests. Saleska et al. [67] used this relationship to show that, contrary to ecosystem 
models of the Amazon, the forests are greener in the dry season than in the wet season, and a period of 
drought in 2005 actually stimulated carbon fixation rather than inhibiting it. Plants used water stored in 
the soil profile to support growth, and took advantage of higher radiation levels in the dry periods. 
Huete et al. [68] extended these studies to three distinct Monsoon Asia tropical forests and found 
similar MODIS EVI and tower GPP linear relationships across the multiple sites, potentially offering 
promising opportunities for regional scaling of carbon fluxes across the heterogeneous canopies of 
Southeast Asia. 

Sims et al. [69] and Rahman et al. [70] also found a strong relationship between tower GPP and 
MODIS EVI across a wide range of biome types and concluded that EVI can be used to estimate GPP 
directly, without direct consideration of LUE required in many SVAT models. This simplifies the 
estimation of GPP, as LUE is difficult to determine by direct measurement. Yuan et al. [71] used 
NDVI to estimate fPAR, and found that a simple LUE model moderated by temperature and soil 
moisture could predict daily gross primary productivity from 28 EC flux towers over forests, 
grasslands and savannas with coefficients of determination (r2) of 0.77 - 0.85. 

Further work is needed on how best to integrate satellite data into ecosystem production efficiency 
models. Attempts to improve upon the satellite EVI and tower GPP relationships through the use of 
PAR and fPAR variables have been generally unsuccessful [72,73] in part due to the weaker 
correlation of fPAR with satellite NDVI compared to EVI. There is a need to better separate canopy 
absorbed PAR into the photosynthetically-active (chlorophyll) and non-active (senesced vegetation, 
woody material) components and better understand the seasonal hysteresis observed in satellite 
greenness relationships with tower measured fPAR data [73]. Xiao et al. [72] distinguished between 
the photosynthetically-active and non-photosynthetically active components of canopy absorbed 
radiation, and reported the EVI to be more closely related to the chlorophyll component of fPAR, 
while NDVI was more closely correlated with total canopy fPAR. Unlike NDVI, EVI incorporates 
both Blue and Red bands in its formulation, and chlorophyll absorbs strongly in both the Blue and Red 
bands. Grace et al. [74] proposed combining VIs with remotely-sensed chlorophyll florescence, an 
indicator of plant stress, to derive LUE from remote sensing data alone. 
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4.4 Examples of VIs and Flux Tower Data to Estimate ET 
 

Remote sensing approaches to estimating ET have historically used measurements of land surface 
temperature (LST) from Thermal Infrared (TIR) sensors as the key satellite measurement [6, 38, 39, 
40, 43, 44]. These methods were developed starting in the 1970s and continue to dominate ET studies 
today. They typically use the difference between air temperature (measured on the ground) and LST 
(measured by satellites) to estimate sensible heat flux from the land surface. Then they obtain 
estimates of Rn and G from ground or remote sensing data (typically from VIs) and compute ET, 
expressed as the latent heat of evaporation, as a residual in the surface energy balance (Equation 4). 
These methods present a number of difficulties due in part to the lack of 1:1 correspondence between 
the LST measured by satellite and the so-called "aerodynamic surface temperature" required to 
calculate H [6, 38], and a number of methods have been devised to surmount this problem using 
context within the imagery, e.g. [38, 39, 44, 75]. 

Recent studies have combined flux tower measurements of ET with time-series VIs to accurately 
scale ET over larger landscape units without the use of LST. They take advantage of the strong 
correlation between ET and VIs observed in numerous studies. Table 1 gives correlation coefficients 
between ET and MODIS EVI or NDVI at 11 tower sites in the southwestern U.S. The sites included 
nine riparian sites with different types of vegetation [34], plus one upland shrub site and one upland 
grass site [76]. Towers included both BREB and EC types. ET values from towers were compiled in 
16-day intervals over multiple years and correlated with 16-day composite MODIS VI values. The 
correlation analysis used the single MODIS pixel encompassing the tower location at each site. 

EVI was strongly correlated with ET at all tower sites, and correlation coefficients were higher for 
EVI than NDVI at all sites. At the riparian sites, EVI combined with maximum daily air temperature 
(Ta) across all sites produced a simple model that predicted ET with r2 = 0.79, leaving only 21% of the 
variance in ET unexplained. At the two semiarid upland sites, EVI plus precipitation produced a model 
with an r2 = 0.76, even though the sites were only 20-25% vegetated. ET is dominated by T from 
vegetation even in dry ecosystems, and VIs (especially the EVI) clearly have great potential for scaling 
point measurements of ET over large areas.  

Nagler et al. [34] used the EVI-Ta relationship to produce tower-validated estimates of ET for the 
major vegetation types on western U.S. rivers and reported that the exotic species saltcedar, thought to 
be a heavy water user, actually had low to moderate rates of ET compared to native species. Cleugh et 
al. [77] combined MODIS NDVI and surface meteorology data to estimate ET in two different 
Australian ecosystems, and reported r2 = 0.74 between remote sensing and tower measurements, 
demonstrating the validity of the method over regional scales of measurement. Mu et al. [78] used 
MODIS EVI and meteorological data to predict ET at the continental scale, and produced r2 = 0.76 
when estimates were compared to ET measured at 19 Ameriflux towers. They extended their model to 
the global scale, and concluded that MODIS EVI and ground meteorological data can be used to 
provide critical information on the regional and global water cycle resulting from environmental 
changes. Yang et al. [79] combined MODIS EVI meteorological data in a Machine Learning Program 
to predict ET at 19 towers sites with r2 = 0.75 for the conterminous U.S., and Wang et al. [80] 
combined MODIS EVI, Ta and surface net radiation to predict ET in the Southern Great Plains of the 
U.S. with r2 = 0.83 compared to flux tower values. The accuracy of the ET predictions in each case is 
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within the error and uncertainty range inherent in the flux tower measurements of ET. In the special 
case of phreatophytic vegetation rooted into deep soil water in arid zones, Groeneveld et al. [81] found 
that a single mid-summer, high-resolution NDVI image calibrated against potential ET could predict 
actual annual ET determined by flux towers with acceptable accuracy across a wide range of 
vegetation types. 

 
Table 1. Correlation coefficients between evapotranspiration measured at moisture flux 
towers and MODIS vegetation indices and relevant meteorological data in the 
southwestern U.S. Ta is maximum daily temperature and P is precipitation. Correlation 
coefficients for combined variables are for the multiple linear regression equation of best 
fit for combined riparian (EVI + Ta) or upland (EVI + P) sites. From data in [31,34,76]. 

 
Tower Site Vegetation EVI NDVI Ta P EVI + Ta EVI + P 
Riparian 
 San Pedro 1 

 
Mesquite 

 
0.87 

 
0.83 

 
0.77 

 
- 

 
0.88 

 
- 

 San Pedro 2 Mesquite 0.86 0.82 0.77 - 0.90 - 
 San Pedro 3 Sacaton 0.94 0.82 0.77 - 0.97 - 
 Rio Grande 1 Saltcedar 0.83 0.68 0.84 - 0.88 - 
 Rio Grande 2 Saltcedar 0.84 0.52 0.82 - 0.89 - 
 Rio Grande 3 Cottonwood 0.84 0.74 0.86 - 0.90 - 
 Rio Grande 4 Cottonwood 0.82 0.77 0.89 - 0.89 - 
 Colorado 1 Saltcedar 0.83 0.64 0.92 - 0.92 - 
 Colorado 2 Arrowweed 0.64 0.50 0.76 - 0.79 - 
Upland 
 Grassland 

 
Grama 

 
0.82 

 
0.80 

 
- 

 
0.66

 
- 

 
0.84 

 Shrubland Mixed 0.87 0.78 - 0.72 - 0.90 
Mean   0.83 0.72 0.82 0.69 0.89 0.87 

 
VI methods for ET are valuable monitoring tools but they cannot be used as early indicators of plant 

stress, important in irrigation scheduling and other water management tasks. However, VIs can be 
combined with satellite-derived LSTs to provide estimates of ET, soil moisture conditions and land use 
changes, as in the “triangle method” where pixel values of NDVI and LST are plotted against each 
other to produce a response surface of vegetation density and surface temperature [75]. 
  

5. Reformulating SVAT models to accommodate new data sources 
 

Shuttleworth [49] described the history of evaporation research over the past 30 years as a series of 
loosely-linked conceptual and technical advances leading to the present state of the science. Carbon 
flux studies parallel that history [16,37]. Gamon and Qui [37] pointed to the historical connection 
between SVAT parameters and what could be measured at the time the models were developed. 
Historically, SVAT and SEB models have taken a "bottom-up" approach, attempting to scale leaf level 
measurements to whole canopies and stands of plants [16]. For example, the Penman-Monteith 
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equation [11] for ET treats the canopy as a series of resistances, starting with individual stomata at the 
leaf level then proceeding to the canopy level, where the atmospheric resistance term is applied.  
 

Figure 5. Stomatal resistance of cottonwood, willow and saltcedar plants under stressed 
and unstressed conditions. Clusters of plants (6 per species) were grown outdoors in 
Tucson, Arizona. Sap flow sensors measured plant transpiration over an eight day period 
in summer, and micrometeorological data were used to model the diurnal course stomatal 
resistance for each species based on potential ET. Plants were then subjected to drought 
or salt stress (3 per treatment) for the final 3 days of the measurement period. Stomatal 
resistance was calculated based on sap flow measurements at three time points in the 
mid-day period, and plotted against unstressed stomatal resistance calculated from 
meteorological data. Plants are combined across replicates and stress treatments in the 
plot. From data in [36]. 
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Carbon flux models usually start at the leaf level as well, sometimes assuming Michaelis-Menton 
kinetics for carbon fixation as functions of light intensity and carbon dioxide concentration as starting 
points, then using radiation transfer models to scale light intensity and photosynthesis over the layers 
of leaves in the canopy [16]. These models were developed when leaf-level measurements of 
photosynthesis and stomatal conductance were becoming feasible.  

The bottom up approach has encountered some problems in remote sensing applications, however. 
First is the complexity of actual plant canopies, especially in mixed stands of plants, compared to what 
can be determined from remote sensing measurements. Second is the problem of equifinality, the 
tendency of models with different levels of complexity and different starting assumptions to produce 
similar results [82]. This has also been called the problem of underdetermination, when a single data 
set can be used to support multiple competing hypotheses. Models that use remote sensing data are 
prone to this type of error because the same VIs, or transformations of VIs, are often used to estimate 
more than one model parameter, introducing co-linearity, and because the ground data by which they 
are calibrated or validated have errors or uncertainties on the order of 20-30%. The traditional 
approach to resolving problems of underdetermination is to prefer the simpler model or hypothesis 
over the more complex (Occam’s Razor) [83], although this is a philosophical rather than a scientific 
principle. 

With the advent of flux towers and moderate resolution, daily return satellite imagery, a different 
approach has become feasible. Top-of-canopy measurements of fluxes can be scaled to larger 
landscape units using simple models developed from ground data and VIs. Tower data can then be 
used to invert SVAT models to test hypotheses about the controls on photosynthesis, growth and water 
consumption at the plot scale, and changes in foliage density over time revealed by satellite sensors 
can be used to scale these findings to the ecosystem or biome scales of measurement. Plant stress 
detected at the towers is detectable by satellites first as an anomaly in VI:surface temperature plots 
[75] and latter as a drop in VI as plants adjust their foliage density to match the limiting conditions [4].  

A recent successful example of the combined approach was the use of flux tower and MODIS EVI 
data in the Amazon to show that ET and GPP increased, rather than decreased, in response to seasonal 
or interannual dry periods, contrary to model results [66,67].Those papers concluded that more 
observational data and less reliance on models could lead to more accurate predictions of climate 
change effects on global ecosystems. 

To take advantage of the new tools, it might be necessary to reformulate traditional SVAT and 
SEB models that use VIs as proxies for LAI, fc, and other canopy attributes that are only moderately 
well predicted by remote sensing measurements, as recommended in [37]. One approach is to use so-
called Big Leaf models of carbon fixation and stomatal conductance [49]. These models, first 
suggested by Monteith in 1965 [cited in 49], treat the canopy and associated unvegetated areas as a 
single surface, and use average leaf and surface properties as scalars. Big Leaf models are especially 
well suited to satellite sensors and flux towers that provide top of the canopy measurements. Big Leaf 
models frequently perform as well as multilayer SVAT models in actual applications, e.g. [84]. 
Although they oversimplify actual canopies, they can produce accurate results when calibrated with 
flux tower or other ground data [16]. Current Big Leaf models still require an estimate of LAI, because 
they take average leaf properties then scale them over the canopy by multiplying by LAI [20,49]. 
However, in principal LAI could be replaced by a VI in these models [37]. 
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6. Conclusions 
 

VIs and their transformations and derivatives are extremely useful tools in monitoring processes 
related to fPAR absorbed by vegetation. These include processes related to photosynthesis at the 
canopy or ecosystem scale (phenology, primary productivity, net carbon fixation, gross primary 
productivity), and processes related to plant transpiration (ET, rainfall use efficiency, groundwater 
withdrawal). VIs are measures of green foliage density, and they must be combined with ground data 
or appropriately calibrated models to produce accurate information about these processes. VIs 
represent composite properties of fc, LAI, and canopy architecture and they are only moderately useful 
in predicting individual canopy properties required in SVAT and SEB models. Therefore, remote 
sensing methods for estimating ecosystem variables should be formulated in ways that take advantage 
of their strengths and minimize their weaknesses. Remote sensing applications are perhaps strongest 
when they are used as scaling tools for observational ground data rather than as detailed physical 
models of the landscape. 
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