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Abstract: Global Navigation Satellite Systems (GNSS), such as the Global Positioning 
System (GPS), have been widely utilized and their applications are becoming popular, not 
only in military or commercial applications, but also for everyday life. Although GPS 
measurements are the essential information for currently developed land vehicle navigation 
systems (LVNS), GPS signals are often unavailable or unreliable due to signal blockages 
under certain environments such as urban canyons. This situation must be compensated in 
order to provide continuous navigation solutions. To overcome the problems of 
unavailability and unreliability using GPS and to be cost and size effective as well, Micro 
Electro Mechanical Systems (MEMS) based inertial sensor technology has been pushing 
for the development of low-cost integrated navigation systems for land vehicle navigation 
and guidance applications. This paper will analyze the characterization of MEMS based 
inertial sensors and the performance of an integrated system prototype of MEMS based 
inertial sensors, a low-cost GPS receiver and a digital compass. The influence of the 
stochastic variation of sensors will be assessed and modeled by two different methods, 
namely Gauss-Markov (GM) and AutoRegressive (AR) models, with GPS signal blockage 
of different lengths. Numerical results from kinematic testing have been used to assess the 
performance of different modeling schemes. 
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1. Introduction 

Recent advances in Micro Electro Mechanical Systems (MEMS) based inertial sensors are quite 
significant in that they promise to be smaller and cheaper systems. MEMS is the integration of 
mechanical elements, sensors, actuators, and electronics on a common silicon substrate through the 
utilization of microfabrication technology (Figure 1). MEMS are expected to revolutionize many 
product categories by bringing together silicon based microelectronics with micromachining 
technology, and enabling complete systems-on-a-chip to be realized [1]. 

Figure 1. MEMS based Accelerometer (VTI Inc.). 

 

 
Among the applications of MEMS technology, MEMS- based inertial sensors such as MEMS based 

gyroscopes and MEMS based accelerometers have been adopted as aiding sensors to improve 
navigation information continuity. While the MEMS based gyroscope is a relatively new technology 
and still an ongoing research activity for commercial uses, the MEMS based accelerometer has been 
widely utilized in a variety of developments and its success is significant.  

In the navigation field, it has been reported that many efforts have been made to make the smaller 
and less expensive navigation devices available for more users. MEMS based inertial sensors have 
recently drawn great attention as aiding GPS outages with low inherent cost, small size, low power 
consumption, and solid reliability. However, their performance is still considered poor in accuracy for 
certain applications. In this paper, the MEMS based inertial sensors’ performance will be investigated 
and a land vehicle navigation system prototype will be developed by integrating MEMS based inertial 
sensors, a low cost GPS receiver and a digital compass.  

 In spite of the smaller size and cost effectiveness of MEMS based inertial sensors, the error 
behaviour of MEMS based inertial sensors must be appropriately treated in order to turn the raw sensor 
measurements into reliable and useful data for vehicle position determination. When we confine the 
scope of application of MEMS based inertial sensors to aiding GPS solutions to a relatively short 
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period of time, some deterministic error sources (zero-offset bias and 1st order scale factor) and 
stochastic variation (random noise) can be considered as the main concerns to be discussed among the 
different types of error sources for MEMS based inertial sensors. Besides, the understanding of their 
stochastic variations is of significant importance for the development of optimal estimation algorithms.  

In the subsequent sections, the conventional error model of inertial sensors will be simplified 
considering MEMS based sensor design and a short time period usage assumption. The deterministic 
error sources will be estimated by using multi-position test which is well described in the reference [2], 
and the stochastic variation will be modeled by 1st order Gauss-Markov (GM), which has been widely 
used in navigation field, and a higher order AutoRegressive (AR) model introduced in [3]. The 
deterministic error sources (zero-offset bias and 1st order scale factor) of MEMS based inertial sensors 
estimated by using multi-position testing in the laboratory will be referenced to initial measurement in 
kinematic environments. For the stochastic variation, not only the conventional 1st order GM model 
but also a higher order AR model will be used in optimal estimation algorithm (i.e. Kalman filter) to 
quantify the effect of precise stochastic modeling method for MEMS based inertial sensor applications 
in kinematic environments. When the performance of MEMS-based inertial sensors are admissible for 
a certain application such as land vehicle navigation, a continuous integrated navigation system will be 
available by integrating GPS with cheaper and smaller inertial sensors in urban canyons with GPS 
signal blockages. 

2. Accelerometer/Gyroscope Error Model and Stochastic Modeling 

There are two major aspects that should be considered in the error analysis of any MEMS-based 
sensor: (1) error analysis to identify deterministic error and non-deterministic (stochastic) error 
sources; and (2) the development of stochastic modeling methods used to characterize the random part 
of the sensor output.  

2.1. Error Sources and Error Models 

Current commercial accelerometers/gyroscopes are mainly classified as either mechanical or solid-
state. As mentioned before, all accelerometers/gyroscopes are suffering from a variety of error sources 
which are slightly different depending upon different types of the manufacturing principles. The error 
equation of conventional mechanical inertial sensors from the reference [2] will be first introduced and 
the error equation will then be simplified according to the tolerance of a specific application such as 
land vehicle navigation system and MEMS technology. 

Conventionally, the measurement in the X-axis provided by accelerometer ( xa~ ) can be expressed in 
terms of the applied acceleration acting along its sensitive axis ( xa ) and the accelerations acting along 
the pendulum and hinge axes, ya  and za  respectively, by the equation [2]: 

xyxvfzzyyxxx naaBBaMaMaSa ++++++= )1(~      (1) 

where xS  is the scale factor error, usually expressed in polynomial form to include non-linear effects, 
zy MM ,  are the cross-axis coupling factors, fB  is the measurement zero-offset bias, vB  is the vibro-

pendulous error coefficient, and xn  is the random noise. 
For an accelerometer based on MEMS technology and non-pendulous design, it is reasonable to 
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expect that the cross-axis coupling factors and vibro-pendulous error would be insignificant because 
most MEMS accelerometers are assembled as three single-axis accelerometers so that they have low 
cross-axis coupling factors [4]. Then, the conventional error model can be simplified as below, 

xfxxxx nBaSaa +++=~       (2) 

As indicated by equation (2), the zero-offset bias and the 1st order scale factor are the main concerns 
for the deterministic error sources and the last term is the stochastic variation of the sensor output. The 
Y-axis and Z-axis measurements can be expressed in the same way.  

Similarly, current commercial gyroscopes utilize different development principles, resulting in 
various types of gyroscopes with distinct characteristics for each one. Accordingly, assuming the 
acceleration sensitive errors are negligible, the measured angular rate can be modeled for many 
applications as [2] 

zfyyxxzzz nBMMS +++++= ωωωω )1(~      (3) 

where xS  is the scale factor which may be expressed as a polynomial in zω to represent scale factor 
non-linearity, zy MM ,  are the cross-axis coupling factors, fB  is the measurement zero-offset bias, 

zn  is the random noise. Using the same assumption in the accelerometer case, equation (3) can be 
simplified as 

zfzzzz nBS +++= ωωω~      (4) 

in which only the zero-offset bias and 1st order scale factor are included with significant contribution to 
the deterministic error sources. Equations (2) and (4) will be used to estimate the deterministic error 
sources (zero-offset bias and 1st order scale factor) by using multi-position testing. 

2.2. Stochastic Modeling 

Considering only linear stationary stochastic processes, one way to specify a random process is to 
describe in detail the conceptual chance experiment giving rise to the process [5]. As it can be seen, 
many signals are quite different, even with same mean and variance values, so it is clear that more 
information than just mean and variance is needed in order to describe the random process more 
precisely. It has been seen that the autocorrelation function, denoted as )(τXR  in the sequel, is an 
important descriptor of a random process that is relatively easy to obtain because it depends on only 
the second-order probability density for the process [5]. Thus, if )(τXR is known a-prior or if we can 
estimate )(τXR  from observational data, then we can use this information to help “identify” which of 
the special models (if any) would fit the process under study [6]. 

If a stationary Gaussian process tX  has an exponential Autocorrelation, it is called a Gauss-
Markov (GM) process. As shown in Figure 2, the autocorrelation and spectral functions of 1st order 
GM process have the form of  
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The mean-square value and time constant for the process are given by the βσ 1/  and 2  parameters, 
respectively. The Gauss-Markov process is a very useful process in applied work because (i) it can fit a 
large number of physical processes with reasonable accuracy, and (ii) it has a relatively simple 
mathematical description. In positioning and navigation fields, 1st order Gauss-Markov process has 
been frequently used to describe the stochastic behaviors due to its simple estimation. 

Figure 2. Autocorrelation and FFT Transform of 1st Order Gauss Markov Process 

 
 

However, quite often even with simple representation of time-correlated signal behaviour, the 
estimated autocorrelation and its FFT transform are quite different from 1st order Gauss-Markov 
process shown in Figure 2. Considering the very noisy measurements and poor performance of MEMS 
based inertial sensors, the more precise and appropriate stochastic modeling is desirable. In this paper, 
a higher order AutoRegressive model will be applied and compared with 1st order Gauss-Markov 
process.  

Some of special discrete parameter stochastic models which can provide us with a structure for 
fitting models to practical data have been studied in probability and mathematical statistics theory such 
as the purely random noise }{ tε , the AutoRegressive model (AR), the MovingAverage model (MA), 
the mixed AutoRegressive/MovingAverage model (ARMA), the harmonic model, just to mention a 
few. Among the discrete parameter stochastic models, AR model has been widely adopted to describe 
random noise output of physical systems in many fields because the relatively simple parameter 
estimation and the value of }{ tε  is “drawn into” the process }{ tX  and thus influences all future 
values, ,......,, 21 ++ ttt XXX resulting in its autocorrelation function “dies out gradually” [6]. The attempt 
to apply AR model for inertial sensors was first introduced in [3] and its mathematical description can 
be found in [3][6][7][8].  

With the standard form of AR model,  

tktktt XaXaX ε=+++ −− ...11      (6) 
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where 0b  is the variance 2
εσ  of tε  which represents a random process. For a variety of methods to 

estimate the parameters ka  the reader is referred to the literature ([6], [7]) and this paper will apply 
one of them. Also, if the process is both causal and stable, then all the poles of )(zH  must lie inside 
the unit circle of the z-plane because the Region of Convergence (ROC) is of the form | z | > rmax, and 
since the unit circle is included in the ROC, one must have rmax < 1, where rmax equals the largest 
magnitude of any of the poles of )(zH [9]. 

The most considered AR model based parameter estimation methods are the Yule-Walker, Burg and 
Unconstrained Least-Squares methods [7]. For a large dataset, the results of these three different 
methods provide a fairly close estimation results of the parameters. However, there are still some 
different characteristics for each method to be noticed. The authors chose the Burg method, which is 
quite popularly used and estimates the reflection coefficients by minimizing both forward and 
backward prediction errors in the least square sense with the constraint that the AR parameters satisfy 
the Levinson-Durbin recursion. Unless a priori information about the order of an AR Model was given, 
the order of the AR model is an unknown, so it needs to be estimated. Several method to determine the 
order of the AR Model have been reported in literatures such as Final Prediction Error (FPE), Akaike’s 
Information Criterion (AIC), Minimum Description Length (MDL), Investigation of Residual Variance 
(IRV) and etc. One of the common ways to determine the order of the AR model is to investigate the 
residual variance for different orders. Assuming the true model is of finite order, as the estimated order 
is getting close to the true model, the residual variance wouldn’t reduce significantly [7]. It should be 
kept in mind that a higher order AR model would increase Kalman Filter error states. As a result, it 
would increase the computational loads and might result in unstable solutions [3]. 

3. Performance Analysis Methodology 

3.1. Kinematic Testing System Configuration 

The kinematic testing has been conducted to qualify the performance of the integrated system of 
MEMS based inertial sensor (RGA300CA) and the low-cost GPS receiver module (Leadtek GPS-
9543) utilizing different stochastic modeling schemes (4th order AR model and 1st order Gauss-Markov 
model). It is a simplified navigation testing with the assumptions that the testing area is 2-dimensional, 
flat (nominal roll/pitch) and non-accelerating (short testing duration). Also, the initial misalignment is 
assumed to be negligible. For the initial position and heading information, a dual frequency GPS 
receiver (Javad Legacy GPS receiver) and a digital compass (Honeywell HMR-3300) have been used 
and the measurements from the high precision Javad Legacy GPS receiver were also processed to 
generate the reference trajectory shown in Figures 3 and 4. 
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Figure 3. Kinematic Testing Sensors. Figure 4. Testing Installation. 

 
 
Two GPS antennas (Javad Legacy and Leadtek GPS 9531) were mounted on the roof of the testing 

van and the testing system was held tight inside the vehicle. Two laptop computers were needed to 
record the reference GPS measurements and integrated system with different acquisition S/W 
separately. Table 1 summarizes the basic specifications of each sensor in the testing system.  

Table 1. System Specifications (Courtesy of Crossbow, Leadtek, Honeywell Inc.). 

RGA300CA 

Angular Rate Acceleration 

Range: Yaw (°/sec) ±100 Range: X/Y/Z (g) ±2 

Bias: Yaw (°/sec) <±2.0 Bias: X/Y/Z (mg) <±30 

Scale Factor Accuracy (%) <1 Scale Factor Accuracy (%) <1 

Non-Linearity (%FS) <0.3 Non-Linearity (%FS) <1 

Resolution (°/sec) <0.025 Resolution (mg) <1.0 

Bandwidth (Hz) >25 Bandwidth (Hz) >50 

Random Walk (°/hr1/2) <2.25 Random Walk (m/s/hr1/2) <0.15 

 

GPS-9543 HMR3300 

Main Chip SiRF star II Heading Accuracy 1° 

Tracking Channel 12 Resolution 0.1° 

L1 Frequency (MHz) 1575.42 C/A code Repeatability 0.5° 

Position Accuracy (m) 10, 2D   

Input Massage NMEA/SiRF Binary   

Output Massage SiRF Binary + NMEA-0183   

Time Mark Output 1pps   
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3.2. Testing Dataset and Data Processing 

The testing dataset is composed of three different system files and one reference GPS file. The 
system files are using the same computer time. For the field testing, the system will include about 20 
minutes warming-up period, the compass calibration period, the static motion period, and the 
kinematic motion period. After the warming period, a digital compass will be calibrated using 360° 
rotation circle motion each time and then, at least 5 minutes static collection will be made. It would 
have been done this way because on/off zero-offset bias should be examined before actual kinematic 
data processing. The total kinematic testing duration was limited to 10 minutes and the same testing 
routine was conducted 10 times.  

For the initial heading, the digital compass output will be used considering the discrepancy between 
magnetic north and geodetic north. The term “magnetic north” refers to the position of the earth’s 
magnetic pole and it differs from a geodetic north. The angle between magnetic north and the geodetic 
north direction is called magnetic declination. As the magnetic declination does not remain constant in 
time, it needs to be referred to a recent geographic lookup table or geodetic services available in order 
to add or subtract the proper declination angle to correct for the geodetic north with certain accuracy. 
Natural Resources of Canada (NRCan) provides a recent estimation of the declination based on 
Canadian Geomagnetic Reference Field (CGRF) which is a model of the magnetic field over the 
Canadian region. As a result, a declination angle of 17.183° E was obtained through the University of 
Calgary campus with 0.5° accuracy and added to the initial heading from HMR3300 magnetic compass. 

Figure 5. Data Processing Flow. 

 
 
The initial position will be provided through the processing of the Javad Lagacy GPS receiver 

measurements using the Precise Point Positioning (PPP) software package P3TM developed at The 
University of Calgary. The PPP position solutions have centimeter to decimeter accuracy, providing a 
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reference trajectory to assess the performance of the integrated system. The data processing associated 
with kinematic testing is illustrated in Figure 5. The trajectory generated by the integrated system will 
be compared with the reference trajectory using GPS time synchronization. The same data processing 
will be conducted for two different stochastic modeling schemes (GM vs. AR). 

3.3. Mathematical Error Model 

The Kalman filter mathematical derivation for 2-dimensional testing using X/Y accelerometer and 
yaw rate measurements along with GPS position updates is followed below based on the discussion in 
the reference [10].  
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where ],[ en  are the position coordinates in north and east directions and ],[ en vv  are the 
corresponding velocities; ],[ en αα  and ],[ vu αα  are the measured accelerations in the navigation and 
body frames, respectively; ψ  is yaw angle and rω  is the measured yaw rate in the body frame, and 
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When the bias errors are modeled in each of the sensors, 

      uuu δααα +=~  

vvv δααα +=~       (10) 

      rrr δωωω +=~  

and the actual mechanization system is modeled as 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

r

vu

vu

e

n

e

n

v
v

v
v
e
n

ω
αψαψ
αψαψ

ψ ~
~)ˆcos(~)ˆsin(

~)ˆsin(~)ˆcos(
ˆ
ˆ

ˆ
ˆ
ˆ
ˆ
ˆ

     (11) 

Linearization about the trajectory results in the following set of equations, 
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Expanding equation (12) to include the bias errors as the error states which are modeled as random 
constant process, we have the following dynamic equation: 
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Denote the coefficient matrix in equation (13) as F, the corresponding transition matrix can be 
approximated by the following equation: 

tFIINS ΔΦ +=       (14) 

The discrete form of equation (13) becomes 
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Now, the accelerometer bias errors and gyroscope bias error will be modeled by GM and AR 
methods separately with the estimated values based on multi-position testing. Note that the random 
white noise vectors associated with the dynamic equations have not shown in the above derivations. 

4. Multi-Position Testing 

RGA300CA system consists of a MEMS angular rate gyro and a triaxial silicon MEMS 
accelerometer. The triaxial accelerometer is a bulk-micromachined capacitive accelerometer whose 
input range is ±2g. 

First, RGA300CA has been tested in the rotation panel connected to SmartMotor from Animatics 
Corporation. The testing rate table was carefully leveled relative to the local gravity vector. Once an 
accelerometer was attached to the testing rate table properly, the accelerometer output was collected 
with constant speed of rotation. The actual measurements of X/Y/Z axes of the accelerometer were 
compared with the reference acceleration determined by the testing rate table orientation. Using the 
error model described in the previous section and the “best fit” line regression method, the 
deterministic error sources have been estimated and used for calibration. Both of accelerometer and 
rotation panel were turned on and off every time with about 10 minutes apart and were warmed up for 
about 5 minutes before each datalogging [11]. The room temperature (about 21°C) was also monitored. 
The local gravity value (9.8080.m/s2) in the Multi-Sensor Lab at the University of Calgary has been 
used for the reference gravity value. One set of the accelerometer measurements coinciding z-axis with 
rotation axis of rate table is shown in Figure 6. 
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Figure 6. RGA300CA Accelerometer Measurements. 

 
For the sensor, 20 Hz logging rate and approximate bandwidth 10 Hz were used with data logging 

systems as GYRO-VIEW from Crossbow for RGA300CA. Also, the model SM2330SQ version 4.11 
motor was used with SMI 1.310 windows S/W from Animatics. The RGA300CA and the rotation 
panel were connected to separate computers with RS-232 port cables and the output of the sensor 
measurements was saved in text file format.  

Due to the instability of the rotating motor and the initial alignments, the angular velocity should be 
calculated for every run. The zero-offset bias ( fB ) and 1st order scale factor ( xS ) can be obtained by 

using Least Squares method with rotational measurements and reference gravity value. The bias and 
the scale factor stability results are given in Figures 7 and 8 with their mean & standard deviation 
shown in Table 2. 
 

Figure 7. Accelerometer Zero Offset Bias Stability. 
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Figure 8. Accelerometer 1st order Scale Factor Stability. 

Scale Factor Stability

-0.20

-0.18

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00
0 2 4 6 8 10 12 14 16 18 20

Samples

M
ag

ni
tu

de
 [%

]

X-axis S.F.[%]

Y-axis S.F.[%]

Z-axis S.F.[%]

 

Table 2. Bias and Scale Factor Results. 

  

X-axis Y-axis Z-axis 

Bias[mg] S.F.[%] Bias[mg] S.F.[%] Bias[mg] S.F.[%] 

Mean 2.3961 -0.093 2.4233 -0.1284 2.0901 -0.0962 

St.D. 0.8858 0.0358 1.1304 0.0256 0.8356 0.0357 

  
As discussed in the previous section, the deterministic error sources of RGA300CA Yaw rate 

gyroscope are zero-offset bias and 1st order scale factor. Analogous to the accelerometer case, the 
simplified form of error equation (4) without any modification will be used to analyze the actual 
gyroscope’s Yaw rate measurements. This time, the rotational table has been precisely leveled out 
horizontally to provide the reference angular rate which is supposed to be correspondent to Yaw rate of 
gyroscope assuming that Earth rotation rate effect is nominal.  

During a typical test schedule, the rotation rate of the rate table is stepped through a series of 
angular rates starting from zero deg/s recording data at each stage. The rotation speed is kept constant 
for a period at each step and the sensor outputs are allowed to stabilize, before recording the output 
signals. The applied angular rate is varied in incremental steps between the maximum and minimum 
desired rotation rates. At each step, the signals from gyroscope are recorded when the sensor is in 
equilibrium [2]. 

In this experiment, the applied rotation rate has been increased from 0 deg/s to 80 deg/s and then, 
decreased until negative 80 deg/s. After that, it resumed to increase from −80 deg/s to 0 deg/s. For each 
rotation rate steps (10 deg/s), the dwell time consists of stabilization time (about 10 seconds) and 
sample time (about 10 seconds). 33 subsets of data have been recorded based on the same scheme and 
combined together to compose a series of measurements. One of the testing results has been illustrated 
in Figure 9. 
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Figure 9. RGA300CA Gyroscope Measurements.  

 
 

Those recorded data has been averaged out to provide a list of measurements resulting in 
measurement matrix in Least Squares estimation scheme. Accordingly, two parameters (zero-offset 
bias and 1st order scale factor) could be estimated by simple Least Squares process with 33 
measurements. The same test has been performed ten times with approximately 30 minutes interval. 
The results of the ten tests with their mean & standard deviation for Yaw-rate are shown in Table 3. 
The mean values of Table 2 and Table 3 will be referred in the initial static leveling in kinematic 
testing. 

Table 3. Bias and Scale Factor Results of Gyroscope (Yaw-Rate). 

 Bias[d/s] S.F.[%]

1 0.2359 -0.3837

2 0.2284 -0.3977

3 0.2469 -0.3693

4 0.2206 -0.4164

5 0.2990 -0.4538

6 0.3164 -0.3154

7 0.3071 -0.4203

8 0.3180 -0.4367

9 0.3310 -0.3462

10 0.3095 -0.4445

Mean 0.2813 -0.3984

St.D. 0.0407 0.0449 
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5. Stochastic Modeling of RGA300CA 

Based on the discussion in previous sections, the stochastic variation (random noise) of the 
experimental output of accelerometer and gyroscope inside RGA300CA will be analyzed and modeled 
appropriately. Since the usage of 1st Gauss-Markov model is well known in many literatures, only the 
stochastic modeling by AutoRegressive model will be described here. AR model parameters will be 
estimated by using Burg method and corresponding order of AR model will be approximated by 
investigating the residual variance in accordance to different orders considering the increase of state 
vector in Kalman Filter error state.  

Figure 10. Estimated Autocorrelation Functions of tri-axial Accelerometer Measurements. 

  

Figure 11. Estimated Autocorrelation Function of Gyroscope Measurements. 
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Shown in Figures 10 and 11 are the normalized autocorrelation functions of a triaxial accelerometer 
and yaw rate gyroscope outputs in well-leveled static mode with about 3 hours warming time. It is 
clear that the temperature variation of the sensor unit affects the sensor measurements significantly. It 
is well indicated in many literatures that the temperature is the main concern of sensor output stability. 
That is why measurements after three hours were being used for the analysis. Therefore, the relatively 
stable parts of the original accelerometer/gyroscope measurements were only used and their trends 
were removed.  

As expected, the RGA300CA measurements have shown very short correlation times in Figures 10 
and 11. For the gyroscope, its stochastic variation has behaved as quite purely random process (white 
noise). On the other hand, Figure 10 has indicated that there exists time correlated behaviour in the 
stochastic variation of the accelerometer measurements and it should be modeled precisely.  

There are two main steps involved in AR modeling, namely, parameter estimation and order 
determination. Once the three parameter estimation methods in the previous section were performed to 
estimate the parameters using the sample dataset (about 8 hours with a sampling rate of 20Hz), they 
have provided very close results from one to the other. Therefore, in spite of some distinct 
characteristics, any methods could be used in this experiment.  

In the testing, the Burg method has been applied. To assess the proper determination of the order for 
AR model, the estimated residual variance 2

εσ  in accordance to different orders was chosen to be 
analyzed. In order to avoid abrupt increase in the error states of the Kalman filter due to the increase of 
the order of the AR model, an appropriate order ought to be determined when the variance plot starts to 
be leveled out in Figure 12.  

Figure 12. Estimated Residual Variance Plot with Different Orders of AR model for 
Accelerometer. 
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Figure 13. Estimated Residual Variance Plot with Different Orders of AR model for Gyro. 

 
 
Based on the results shown in Figures 12 and 13, a 4th order AR model for the stochastic variation 

of the accelerometer has been chosen and its parameters were estimated by the Burg method. A total of 
10 sample datasets have been used for the estimation of the AR model parameters and the mean values 
will be used for bias modeling in optimal estimation algorithm for kinematic testing. Therefore, the 
stochastic variation of accelerometer output will be modeled by 1st order GM and 4th AR models and 
the stochastic variation of gyroscope output will be modeled by purely random process (white noise) 
based on Figure 11 and 13. Now the error state vector includes 14 states, namely 2 for position, 2 for 
velocity, 1 for misalignment, 8 for 4th order AR model of X/Y-axis of accelerometer biases and 1 for 
white noise for yaw rate bias. The corresponding dynamic model driven by the white noise w and the 
measurement model equations have the expressions as follows:  
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     (17) 

Again, the parameter estimation results in the multi-position testing have been used to construct the 
state transition matrix and the covariance matrix (Q ) associated with kw  in the dynamic model while 

the covariance matrix (R) associated with kv  in the measurement model has been constructed by 
using RMS values of GPS trajectory accuracy compared with PPP solutions. 

6. Kinematic Testing and Results 

To fulfill the testing assumptions described previously the kinematic testing has been conducted in 
one of the parking lots in the University of Calgary which is a relatively flat and open area. The vehicle 
was driven at speeds of 10 to 30 km/hr with six major turns. Around the corners, the speed was 
reduced and then, was accelerated along the straight path comparatively. The same driving testing was 
repeated 10 times with the same routine of data collection in the same area.  
As illustrated and also described previously, the data collection consists of two parts, namely, static 

mode and kinematic mode after warming up and compass calibration periods. The static mode dataset 
for about five minutes was referenced with zero-offset bias estimation which was explained in multi-
position testing. With an initial position from PPP processing of GPS measurements and initial heading 
corrected by CGRF, a Kalman filter error estimation has been conducted which is composed of a 
dynamic model using measurements of X/Y axes of accelerometer, Yaw rate gyroscope of RGA300CA 
and a measurement model using measurements of GPS-9543 module. The trajectories of the integrated 
system using 4th order AR model and 1st order GM model were first generated with the 1-sec update 
interval and were then compared with the PPP solution trajectory and GPS-9543 solution trajectory. 
After that, the system trajectories were generated with 5-sec, 10-sec, 20-sec, 30-sec, 60-sec update 
intervals. 
In the 1-sec update case, the system trajectories by both 4th AR model and 1st order GM model 

processes have indicated slightly better performance than the GPS-9543 solution. In the 5-sec, 10-sec, 
20-sec update cases, the system solutions are showing that the position errors have increased 
significantly between updates. The biggest position errors have often occurred in the corner sections. 
This can be because the Yaw rate error is significant in position determination at the corners. Figures 
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14 and 15 illustrate the horizontal position trajectory for 1-sec update and 5-sec update intervals, 
respectively.  

Figure 14. Kinematic Testing Trajectory Plots (1-sec Updates). 

 

Figure 15. Kinematic Testing Trajectory Plots (5-sec Updates). 

 
 

Shown in Figures 16, 17, 18 and 19 are northing and easting position errors from different 
updating intervals comparing to PPP solutions. It is noticed that the solutions of 4th order AR model 
and 1st order GM model are varying as the updating intervals have increased. 
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Figure 16. Kinematic Testing Position Error Plots (1-sec Updates). 

 

Figure 17. Kinematic Testing Position Error Plots (5-sec Updates). 

 

Figure 18. Kinematic Testing Position Error Plots (10-sec Updates). 
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Figure 19. Kinematic Testing Position Error Plots (20-sec Updates). 

 
It is clear that the position error in each channel tends to increase without GPS position updates and 

settle down with updates. Also, the kinematic mode position error is much bigger than the static mode 
position error in all update interval cases. In the 10-sec updates, the maximum position error has 
reached to about 60 meters and even worse since 100 meter position error has been shown in the 20 sec 
updates. The numerical result of position errors of the kinematic testing is summarized in Table 4. 

Table 4. Kinematic Position Errors (m). 

  X RMS Y RMS Hrioz. RMS 
1-sec Update 4th AR Model 2.2643 4.5664 5.0970 

1st GM Model 2.3521 4.7023 5.2578 
5-sec Update 4th AR Model 3.4984 6.5326 7.4104 

1st GM Model 4.5062 6.3012 7.7466 

10-sec Update 4th AR Model 10.9184 9.5629 14.5142 
1st GM Model 13.6273 9.3777 16.5422 

20-sec Update 4th AR Model 31.0981 25.9061 40.4749 
1st GM Model 22.6127 36.6627 43.0754 

30-sec Update 4th AR Model 21.2120 76.1587 79.0575 
1st GM Model 60.9515 53.1926 80.8983 

60-sec Update 4th AR Model 111.8538 165.9589 200.1340 
1st GM Model 276.4774 149.9599 314.5278 

 
Based on the position error plots and numerical values in Table 4, the estimation with 4th order AR 

model has produced better results than the estimation with 1st order GM model in kinematic testing. 
However, the improvement is relatively smaller than the one in static testing [8]. It could be explained 
that the time-correlated behavior in the stochastic variation of MEMS inertial sensors are quite subtle 
and more unmodeled deterministic error sources are involved in the kinematic environments. This 
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however is dependent on the testing equipments actually used in the testing.  
The kinematic testing described here has made very important assumptions mentioned earlier. 

Therefore, the results with those assumptions and data processing method presented above should be 
understood very carefully.  

6. Conclusions 

The main purpose of this paper was to characterize the error behaviour of MEMS based inertial 
sensors and to analyze the performance of an integrated system prototype of MEMS based inertial 
sensors and a low-cost GPS receiver with digital compass. Along with deterministic error sources 
(zero-offset bias and 1st order scale factor), the stochastic variation modeling of MEMS based inertial 
sensors was focused in this paper due to the assumption of short period of aiding time to GPS. The 1st 
order Gauss Markov and the 4th order AR models have been used to model the stochastic variation of 
the MEMS accelerometers of RGA300CA. The static and kinematic tests have shown a better 
performance using the 4th order AR model. However the test results have also demonstrated that the 
quality performance of MEMS based inertial sensors (RGA300CA) is not yet quite acceptable to aid 
GPS system for land vehicle application for longer period of GPS signal outrage. As the performance 
of MEMS sensors continues to improve, it is recommended to test the latest MEMS sensors available 
in the market to develop GPS/MEMS based inertial sensor integrated navigation system for continuous 
navigation solutions with the procedures described here. 
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