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Abstract: Synergistic applications of multi-resolution satellite data have been of a great 

interest among user communities for the development of an improved and more effective 

operational monitoring system of natural resources, including vegetation and soil. In this 

study, we conducted an inter-comparison of two remote sensing products, namely, 

visible/near-infrared surface reflectances and spectral vegetation indices (VIs), from the 

high resolution Advanced Thermal Emission and Reflection Radiometer (ASTER) (15 m) 

and lower resolution Moderate Resolution Imaging Spectroradiometer (MODIS) (250 m – 

500 m) sensors onboard the Terra platform. Our analysis was aimed at understanding the 

degree of radiometric compatibility between the two sensors’ products due to sensor 

spectral bandpasses and product generation algorithms. Multiple pairs of ASTER and 

MODIS standard surface reflectance products were obtained at randomly-selected, 

globally-distributed locations, from which two types of VIs were computed: the normalized 

difference vegetation index and the enhanced vegetation indices with and without a blue 

band. Our results showed that these surface reflectance products and the derived VIs 

compared well between the two sensors at a global scale, but subject to systematic 
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differences, of which magnitudes varied among scene pairs. An independent assessment of 

the accuracy of ASTER and MODIS standard products, in which “in-house” surface 

reflectances were obtained using in situ Aeronet atmospheric data for comparison, 

suggested that the performance of the ASTER atmospheric correction algorithm may be 

variable, reducing overall quality of its standard reflectance product. Atmospheric aerosols, 

which were not corrected for in the ASTER algorithm, were found not to impact the quality 

of the derived reflectances. Further investigation is needed to identify the sources of 

inconsistent atmospheric correction results associated with the ASTER algorithm, 

including additional quality assessments of the ASTER and MODIS products with other 

atmospheric radiative transfer codes.  

Keywords: product inter-comparison, surface reflectance, vegetation index, ASTER, 

MODIS 

 

1. Introduction 

Numerous studies have demonstrated remote sensing as an effective tool for natural resource 

inventory/interpretation and environmental monitoring, including forest inventory, rangeland 

productivity monitoring, mapping deforestation dynamics, and alien species/weed invasion 

assessments, to name a few [1-4]. In particular, applications of synergistic, multi-resolution remote 

sensing have been shown to improve remote sensing-based land characterization and monitoring 

capabilities [5-8], offering great potential for the development of more effective operational monitoring 

and management decision support systems [9-11]. This has further been facilitated by the advent of 

satellite programs such as the National Aeronautics and Space Administration (NASA) Earth 

Observing System (EOS) and European Remote Sensing (ERS) programs as these programs provide 

systems of coordinated satellite sensors and measurements [12].  
One significant achievement by these satellite programs is a provision of “ready-to-use” remote 

sensing products that have been generated by science-based, calibrated, and validated algorithms [e.g., 

13,14]. For example, two sensors onboard the Terra satellite platform, Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectroradiometer 

(MODIS), both provide georectified, atmospherically-corrected surface reflectance data as one of their 

standard products, which require no other basic processing for their application users to perform 

[13,14].  

There exist differences in these ready-to-use, standard products that may need to be addressed for 

their synergistic applications, namely the sensor characteristics and product generation algorithm 

differences. The sensor spectral response functions can lead to systematic differences in reflectances 

and vegetation indices (VIs) [15,16]. Differences in the spatial resolutions can also cause systematic 

differences in VIs since its magnitude changes non-linearly over a range of vegetation cover conditions 

[17,18]. Likewise, systematic differences or inconsistency among the similar products (e.g., VIs, land 

cover) from different sensors or even from the same sensor can occur when each of the products are 

generated through, for example, different atmospheric correction algorithms [19-21]. ASTER and 
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MODIS are onboard the same Terra platform, which is a significant advantage for their synergistic 

applications.  

There have, however, been few studies that have addressed the compatibility issue between ASTER- 

and MODIS-derived surface reflectances and/or VIs [8]. Using the simple linear regression model of 

[22], Muukkonen et al. [8] cross-calibrated ASTER and MODIS red and near-infrared (NIR) 

reflectances for spectral bandpass differences for a boreal forest in Finland with the resultant R2 values 

of 0.44 and 0.63 for the red and NIR reflectance calibrations, respectively.  

In this study, we used a larger and more diverse dataset and evaluated radiometric compatibility of 

the ASTER and MODIS standard, atmospherically-corrected surface reflectance products and the 

derived VIs from the products with the goal of obtaining a recommended cross-calibration strategy. We 

focused our efforts on investigating the impacts of differences in their spectral response functions and 

atmospheric correction algorithms by means of product inter-comparison, in which the magnitudes of 

systematic differences between the two products and their geographic and land cover dependencies 

were examined. We further assessed the quality or accuracy of the standard products by comparing 

them against an “in-house” surface reflectance and VI dataset that was generated by atmospherically-

correcting ASTER and MODIS level 1B radiance data using in situ atmospheric data. In the following, 

we first briefly describe and contrast the sensor characteristics and the atmospheric correction 

algorithms of ASTER and MODIS (Section 2). This is followed by the description of data analysis 

methods in Section 3. In Section 4, results of our product inter-comparison analyses and accuracy 

assessments are presented. A summary of the results, recommendations, and conclusions is given in 

Section 5.  

2. Comparisons of ASTER and MODIS Sensors and Algorithms 

Launched in December 1999, both ASTER and MODIS are research facility instruments onboard 

the NASA EOS Terra satellite platform [13,14]. MODIS is designed to provide long-term global 

observations every 1 to 2 days at moderate spatial resolutions (250 m – 1 km) and complemented by 

the second MODIS on the EOS Aqua platform launched in May 2002 [14]. ASTER, on the other hand, 

works as the “zoom lens” and provides the highest spatial resolution surface spectral reflectance, 

temperature, and emissivity data (15 m – 60 m) of all the Terra instruments (Table 1) [13]. Although 

their imaging methods differ (i.e., the ASTER VNIR and SWIR subsystems are push-broom, whereas 

MODIS and the ASTER TIR subsystem are cross-tack scanning systems; see Table 1), the image 

acquisition time and, therefore, the sun-target-view geometry of any ASTER and MODIS scene pair is 

basically identical, an advantageous side effect of the two sensors being on the same platform. The two 

sensors have achieved a very high level of geolocation accuracy which appears to be at a comparable 

level to the Terra spacecraft positional accuracy [23-25].  
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Table 1. Selected Instrument Characteristics of the ASTER and MODIS Sensors 
 

 ASTER [13] MODIS [14] 

Swath Width VNIRa & SWIRa: 60 km, push-broom 
TIRa: 60 km, cross-track scanning 
± 24° cross-track pointing for VNIR 
± 8.55° cross-track pointing for SWIR & TIR 

2,330 km, whisk-broom 
± 55° cross-track scanning 

Spectral Bands 14 bands, between 0.520 and 11.650 µm 36 bands, between 0.405 and 14.385 µm 

Spatial 
Resolutions at 
Nadir 

15 m (VNIR: bands 1-3) 
30 m (SWIR: bands 4-9) 
60 m (TIR: bands 10-14) 

250 m (bands 1-2) 
500 m (bands 3-7) 
1,000 m (bands 8-36) 

Radiometric 
Resolution 

8 bits 12 bits 

Geolocation 
Accuracy 

± 50 m (1 s.d.b at nadir) [23,24] ± 50 m (1 s.d. at nadir) [25] 

 a ASTER consists of the three subsystems: the visible/near-infrared (VNIR), shortwave-infrared (SWIR), and 
thermal infrared (TIR) subsystems [13].  
 b Standard deviation. 

 

Compared in Figure 1 are the normalized spectral response curves of the three ASTER visible/near-

infrared (VNIR) and first four MODIS bands that are commonly used in the computation of spectral 

vegetation indices (VIs). In general, these MODIS bands are much narrower in their bandwidths than 

the ASTER VNIR bands. Likewise, the red and near-infrared (NIR) bands of the two sensors are not 

centered around the same wavelengths. Whereas the MODIS red band completely avoids the red edge 

region (~680 nm), the ASTER counterpart extends to cover that wavelength range. The MODIS NIR 

band overlaps at the longest wavelength portion of the ASTER counterpart. These are the 

consequences of the MODIS band selection requirements to avoid Fraunhofer lines and atmospheric 

absorption lines and to include key features in target spectra [26] and of the ASTER VNIR bandpasses 

inherited from those of the Landsat Thematic Mapper and/or the Optical Sensor of the Japanese Earth 

Resource Satellite (JERS-1) while assuring a provision of good signal-to-noise ratio, high spatial 

resolution data [13]. It should be noted that the ASTER sensor does not have a blue band.  

Both ASTER and MODIS provide atmospherically-corrected, surface reflectance products (AST07 

and MOD09, respectively) as one of their standard products. Each of these products incorporates its 

own atmospheric correction algorithm, which are summarized and compared in Table 2. Details of the 

ASTER and MODIS atmospheric correction algorithms are found in [28] and [29], respectively. Both 

algorithms use a combination of pre-computed lookup tables (LUTs) and on-time execution of 

radiative transfer codes. The two algorithms also require the same four inputs: (1) surface pressure, (2) 

ozone concentration, (3) column water vapor, and (4) aerosol optical thickness and type. The ASTER 

algorithm completely relies on outside sources for the required atmospheric information due to the fact 

that the sensor was not designed to retrieve atmospheric information [28]. This was identified as a key 

issue and challenge during the algorithm development stage [28]. Although these two algorithms are 

capable of correcting atmospheric adjacency effects, the modules have not been activated and the 

current product generations assume an homogeneous, Lambertian surface case [28,30].  
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Figure 1. Normalized spectral response curves of ASTER VNIR (1, 2, and 3N) and 
MODIS land (1, 2, 3, and 4) bands (sources: http://asterweb.jpl.nasa.gov/characteristics.asp 
& ftp://ftp.mcst.ssai.biz/pub/permanent/MCST/PFM_L1B_LUT_4-30-99/). The “A” and 
“M” in the parentheses stand for ASTER and MODIS, respectively, and the numbers that 
follow A or M are the band numbers. Typical reflectance spectra of forest, grassland, and 
bare soil are also plotted for reference [27]. 
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Five major differences can be observed between these two algorithms in Table 2 [28,29]. First, the 

ASTER and MODIS atmospheric correction algorithms are based on different radiative transfer codes. 

Second, the amounts of on-time computations are different; the ASTER algorithm computes gaseous 

transmission terms on-time, whereas the MODIS algorithm computes molecular scattering terms on-

time in addition to the gaseous transmission terms. Third, the ASTER algorithm uses interpolation 

techniques to account for changes in solar zenith (and aerosol optical depth), but uses the LUT nearest-

case approach for the molecular scattering optical depth and view angle, whereas the MODIS 

algorithm always interpolates the LUT for all LUT-retrieved atmospheric terms (aerosol-related). 

Fourth, the two algorithms use different input data sources for ozone concentration and column water 

vapor. Finally, the ASTER algorithm does not currently correct for atmospheric aerosol effects (the 

aerosol optical depth being set to zero) for a lack of any reliable and compatible aerosol data sources 

for global applications.  

Accuracy or uncertainty in the atmospheric correction varies significantly depending on surface 

reflectance, atmospheric condition, and sun/view geometry. Theoretical uncertainty analyses indicated 

that overall uncertainty in ASTER surface reflectance is 14% for a low reflectance case (reflectance < 

0.1) and 7% for a high reflectance case (reflectance > 0.1) [28], whereas the overall uncertainty of 

MODIS surface reflectance is estimated as 5 – 9 % for a clear – high aerosol loading condition [29].  
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Table 2. Correction Approaches and Input and Ancillary Data Sources Used in  

ASTER and MODIS Atmospheric Correction (Surface Reflectance) Algorithms 
 

 ASTER (AST07) MODIS (MOD09) 

PGEa Version 3.1 4.0.10 

Radiometric 
Calibration 

WRC b exo-atmospheric solar irradiance 
(4 % calibration accuracy)[28] 

Direct computation of TOAc reflectance by 
ratioing to the solar diffuser panel readings 
(2 % calibration accuracy)[31] 

Approach Combined LUTd -matching and on-time 
MODTRAN computation[28]: 

• LUT generated by a Gauss-Seidel 
iteration code[32] 

• Scattering terms by LUT-matching & 
gaseous transmission terms by 
MODTRAN 

Combined LUT-interpolation and on-time 6S 
computation[29]: 

• LUT generated by the 6S code[33]  

• Molecular terms by on-time 6S 
computation & aerosol terms by LUT-
interpolation 

 

Pressure NCEP GDAS e adjusted for local elevation 
using GTOPO30 f 

NCEP GDAS adjusted for local elevation 
using GTOPO30 

Ozone NCEP TOVS g NASA TOMS h 

Water Vapor NCEP GDAS MODIS water vapor[34] 

Aerosol No correction MODIS aerosols 

Accuracy 14 % for ρ < 0.1; 7 % for ρ > 0.1 5 – 9 % for clear – high aerosol loadings 
 a Product Generating Executable 
 b World Radiation Center 
 c Top-of-Atmosphere 
 d Lookup Table 
 e The National Center for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS) 
 f GTOPO30 (http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html) 
 g TIROS (Television Infrared Observation Satellites) Operational Vertical Sounder (TOVS) 
 h Total Ozone Mapping Spectrometer 

3. Materials and Methods 

3.1. Intercomparison 

A sample of ASTER and MODIS standard daily atmospherically-corrected surface reflectance 

products (AST07 and MOD09, respectively) was acquired over the global land area (Figure 2). We 

first randomly selected 100 locations and then assessed the availability of near-cloud free ASTER 

scenes in year 2003 at each of these locations. When a near-cloud free ASTER scene was found, the 

MODIS scene on the same date at the same location was obtained. This first selection resulted in 82 

paired scenes at 59 locations. A second screening on the selected scene pairs was performed because 

some of the scenes that were initially considered free of cloud cover were found to be contaminated 

with clouds. This second selection resulted in a total of 47 paired scenes at 31 locations (Figure 2).  
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Figure 2. Global distribution of ASTER vs. MODIS comparative analysis locations. 

 

 
 
 

All of the ASTER scenes were reprojected from their original Universal Transverse Mercator 

(UTM) coordinate system onto a sinusoidal projection used in the MODIS surface reflectance product. 

A 5 km square grid was generated for and overlaid on every ASTER and MODIS scene pair. Typically, 

130 5-km grid cells were defined on a single ASTER-MODIS pair. Pixels within every 5 km grid cell 

were averaged to create one pair of ASTER-MODIS reflectance values, resulting in ~ 130 pairs of 

reflectances from one ASTER-MODIS scene pair. We examined several window sizes from 1 km-by-1 

km to 7 km-by-7 km and found that a 5 km-by-5 km window seemed an optimum size to compensate 

for mis-registration between ASTER and MODIS scenes.  

Three spectral vegetation indices were computed from these matched, aggregated reflectances. The 

Normalized Difference Vegetation Index (NDVI) was computed as [35]:  

 
redNIR

redNIRNDVI
ρρ
ρρ

+
−

=  (1) 

where ρred and ρNIR were the red (ASTER Band 2 or MODIS Band 1) and NIR (ASTER Band 3N or 

MODIS Band 2) reflectances, respectively. For MODIS, the Enhanced Vegetation Index (EVI), which 

was developed to optimize the vegetation signal with improved sensitivity in high biomass regions and 

improved vegetation monitoring through a de-coupling of the canopy background signal and a 

reduction in atmosphere influences, was also computed [36]:  

 
1)5.76(

5.2
+−+

−
⋅=

blueredNIR

redNIREVI
ρρρ

ρρ
 , (2) 

where ρblue was the blue reflectance (MODIS Band 3) which was to correct for aerosol influences in the 

index itself [37]. Since the ASTER sensor does not have a blue band, we used a two-band version of 
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the EVI (EVI2) to compare against MODIS EVI, which was developed and being used as a backup 

algorithm in the MODIS VI algorithm[38]:  

 
1

4.22
++

−
⋅=

redNIR

redNIREVI
ρρ

ρρ
 . (3) 

Although its compatibility with the three-band EVI has been thoroughly examined and verified, we 

expected some incompatibility of the ASTER-based EVI2 against the MODIS-derived EVI as the 

former’s coefficients were adjusted for MODIS band passes.  

We first compared these aggregated reflectances, NDVI, and EVI/EVI2 from all the scene pairs at 

once to examine an overall trend and compatibility between ASTER and MODIS. Mean differences 

(MDs) between the ASTER and MODIS radiometric variables, along with standard deviations of the 

differences (SDs) and of the mean differences (or standard errors, SEs), were computed as a 

quantitative measure of discrepancies:  
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n

SD
SE =  , (6) 

where xi,ASTER and xi,MODIS are the reflectance or VI values of ASTER and MODIS, respectively, for the 

5-km square grid cell i, and n is the sample size (the number of pairs). Although these SD and SE 

estimates were likely to underestimate the true variations due to spatial autocorrelation, these were 

used to establish 99% confidence intervals. This comparative analysis was made for the two 

reflectances that were used for the computations of VIs and that both the sensors had (i.e., red and 

NIR), between ASTER and MODIS NDVI and between ASTER EVI2 and MODIS EVI.  

We then repeated the same comparative analysis, but stratified the results by land cover. The 2001 

International Geosphere-Biosphere Programme (IGBP) land cover type information from the Terra 

MODIS standard, 1 km yearly land cover product (MOD12Q1) was obtained for the areas covered by 

each of the ASTER-MODIS scene pairs. The 17 IGBP land cover classes were lumped into a smaller 

number of categories, including forest, shrubland, savanna, grassland, cropland, and barren.  

Finally, seasonal dependencies of ASTER and MODIS differences were examined using a desert 

site. A desert site devoid of vegetation was considered ideal for this purpose because this type of land 

is usually not subject to frequent cloud cover, it does not exhibit seasonality associated with vegetation 

growth, there is a low concentration of and variability in atmospheric water vapor, and it is used for 

long-term stability monitoring of satellite sensors. Six pairs of cloud-free ASTER/MODIS scenes from 

the year 2003 (1/27, 2/12, 3/5, 3/16, 5/19, and 6/20) were located and obtained from a desert sand dune 

area in Saudi Arabia. These six scene pairs were overlaid and aggregated reflectance and VI values 

were extracted from them. MD and SD, along with means and standard deviations, of the aggregated 

reflectances and VIs were computed on a per-scene-pair (per-date) basis and plotted against acquisition 

date for a trend analysis.  
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3.2. Accuracy Assessment 

Product inter-comparison could only allow for the examination of consistency (or relative 

differences) among similar products. Thus, we conducted another independent experiment to 

examine/investigate accuracy or “overall quality” of ASTER and MODIS surface reflectance products 

and VIs by comparing the standard products against “in-house” products.  

Six locations within the conterminous USA were selected based upon a diversity of land cover 

types, availabilities of nearly cloud-free ASTER scenes, and availabilities of in situ atmospheric 

measurements from the Aerosol Robotic Network (AERONET) [39] (Table 3). Radiometrically-

calibrated ASTER and MODIS Level 1B products (AST_L1B and MOD02) as well as MODIS 

geolocation angle products (MOD03) were obtained for the selected sites and dates listed in Table 3 

and reprojected onto the UTM coordinate system. On each of the 14 paired scenes, ten 5 km-by-5 km 

grids were located near the AERONET sunphotometer locations and all the pixels within each grid cell 

were extracted and averaged.  

Table 3. List of Study Sites and In Situ Atmospheric Properties Used for 

ASTER vs. MODIS Accuracy Assessments 
 

Site Name Biome Type 
Date 

(DOYa) 
Solar 

Zenith 
View 

Zenith 
*Ozone 

(Dobson) 

*W.V.b 
(cm-
atm) 

*AOTc 
(550nm) 

HJ Andrews, OR Needleleaf Forest 09/24 (267) 46°  5° 284 1.0 .04 

Bondville, IL Broadleaf Cropland 03/06 (065) 48°  3° 348 0.8 .15 
  09/07 (250) 37°  7° 280 2.1 .14 

Maricopa, AZ Broadleaf Cropland 01/12 (012) 58°  8° 297 1.7 .10 
  08/24 (236) 28°  8° 287 0.9 .02 
  09/16 (259) 34°  5° 288 0.7 .10 

Konza Prairie, KS Prairie Grassland 06/06 (157) 22° 10° 324 1.9 .08 
 & Cereal Crop 11/20 (324) 60°  1° 288 1.0 .01 

Sevilleta, NM Semi-arid Grassland  04/20 (110) 27°  6° 321 0.4 .08 
 & Cereal Crop 05/06 (126) 22°  6° 320 0.3 .08 
  06/16 (167) 19°  6° 304 1.0 .15 
  07/02 (183) 20°  6° 300 1.0 .48 

Railroad Valley, NV Desert Scrub 08/20 (232) 30°  2° 290 0.5 .07 
  09/21 (264) 40°  2° 281 0.7 .01 

 * The values in these columns were obtained from the Aerosol Robotic Network (AERONET) website 
(http://aeronet.gsfc.nasa.gov/)[39].  
 a Day of year 
 b Atmospheric water vapor 
 c Aerosol optical thickness  
 

The 6S radiative transfer code [30] was constrained with in situ AERONET atmospheric 

parameters, and solar zenith, view zenith, and relative azimuth angles, and elevations extracted from 

the corresponding MOD03 products, and run to perform atmospheric corrections on both ASTER and 
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MODIS Level 1B products. We performed total atmospheric corrections and atmospheric corrections 

without aerosols [i.e., by setting aerosol optical thickness (AOT) to zero] on the ASTER Level 1B data, 

whereas only total atmospheric corrections were performed on the MODIS Level 1B data. Since AOT 

values were very small except for the July 2 Sevilleta scenes, the continental aerosol model was used 

for all the aerosol corrections. We did not take into account the coupled atmosphere-surface directional 

effects or adjacency effects as they were not implemented in the atmospheric corrections of the ASTER 

and MODIS standard products used in our product inter-comparison analysis. The same VIs as in the 

above analysis were computed from these reflectances.  

Using this dataset, comparisons were made for the following 3 cases:  

1) cross-comparison between ASTER standard and in-house (no aerosol correction) products,  

2) cross-comparison between ASTER in-house products with and without aerosol correction, 

3) cross-comparison between MODIS standard and in-house products. 

Cases 1 and 3 were to evaluate the accuracy or quality of ASTER and MODIS standard products, 

whereas Case 2 was examined for assessing the potential impact of the no aerosol correction scheme 

implemented in the current ASTER atmospheric correction algorithm. In addition to red and NIR 

reflectances, we analyzed green reflectance since this spectral band is located at a shorter wavelength 

region (see Figure 1) and thus likely more sensitive to the quality of atmospheric correction.  

4. Results 

4.1. Intercomparison 

In Figure 3, red and NIR reflectances, NDVI, and EVI2 of ASTER (AST07) are plotted against the 

corresponding variables of MODIS (MOD09). All four radiometric variables examined here had near-

linear relationships. Apparent, slight curvelinearity was observed only for the NDVI-to-NDVI 

relationship (Figure 3c). Both red and NIR reflectances of ASTER were consistently higher than those 

of MODIS with mean differences (MD) of .027 and .032, respectively (Figure 3a,b). On the other hand, 

the ASTER NDVI was consistently lower than the MODIS counterpart (MD of -.031) (Figure 3c). The 

ASTER EVI2 and MODIS EVI scattered about a 1:1 line and had the smallest mean difference of .012 

(Figure 3d). From the data continuity perspective, the ASTER and MODIS variables, particularly the 

NDVI and EVI2/EVI, also had fairly large scatter (Figure 3). The standard deviations of differences 

were about half the magnitude of the mean differences for red and NIR reflectances (.014 and .017), 

whereas they were even 1.5 and 2 times larger than the mean differences for the NDVI (.048) and 

EVI2/EVI (.023), respectively.  

In order to assess the large scatter observed in Figure 3, we randomly selected four scenes and 

plotted differences of ASTER and MODIS reflectances/vegetation indices against the latter. Scene-to-

scene variability of these differences (relationships between ASTER and MODIS variables) were large 

(Figure 4). Red reflectance differences were nearly constant throughout its dynamic range for each 

scene, but their magnitudes differed significantly among them (Figure 4a). NIR reflectance differences 

also differed among scenes (Figure 4b). One dataset from Spain (the light green triangles in Figure 4b) 

had large scatter and differences were smaller in general, whereas another dataset from India (the red 

squares in Figure 4b) had slightly larger differences than the others.  
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Figure 3. Scatterplots of ASTER vs. MODIS surface reflectance and vegetation indices: 
(a) red reflectance, (b) NIR reflectance, (c) NDVI, and (d) EVI2 vs. EVI. MDs in the 
plots stand for mean differences and the values in the parentheses were standard 
deviations of the differences. 
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NDVI and EVI2/EVI differences also differed largely among the scenes. For the NDVI, differences 

for the India scene and one Spain scene had the same magnitudes and convex trends (the red squares 

and light green triangles in Figure 4c). NDVI differences for the other Spain dataset had the same 

magnitude and convex trend as the above two datasets; however, they formed a separate relationship 

since their NDVI values were higher (the yellow triangles in Figure 4c). The Bolivia dataset showed a 

completely different trend in that its NDVI differences were larger and had a concave trend, having yet 

another relationship (the black circles in Figure 4c). EVI differences of these four scenes had the same 

trends, but their magnitudes were much smaller than those of NDVI differences (Figure 4d).  

In Figure 5, ASTER vs. MODIS differences (AST07 minus MOD09) are summarized by land cover 

types. Some land cover dependencies existed in all of the four radiometric variables. NIR reflectance 

differences were, however, nearly at the same level of ~.03 except for the barren cover type (Figure 

5b). For red reflectance, MD was the largest for barren and the second largest for grassland (Figure 5a). 

For the NDVI, it was large not only for grassland, but for forest as well (Figure 5c). For the EVI2/EVI, 

MD was the largest for barren followed by cropland and grassland, but it was positive for the cropland 

and negative for the grassland (Figure 5d). Smaller MD appeared to be associated with the savanna 

land cover type for which red and NIR reflectance differences and EVI2/EVI difference were the 

smallest (Figure 5a,c,d). Although these observations can be made, land cover dependencies of 

differences did not appear to be consistent across the four radiometric variables.  
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Figure 4. Differences of ASTER and MODIS reflectances and vegetation indices 
(AST07 minus MOD09) plotted against MODIS values. 
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Figure 5. Land cover dependencies of ASTER vs. MODIS differences (AST07 minus 
MOD09). Per-land cover mean differences are plotted along with 99 % confidence 
intervals. The sample sizes (number of pairs) used to compute the mean differences and 
confidence intervals are given at the tops of the bars in (a).  
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Time series plots of the ASTER and MODIS four radiometric variables and their differences from 

the desert site are shown in Figure 6. ASTER values were generally higher and exhibited more short-

term variations (no systematic trend) than those of MODIS (Figure 6). While MODIS red and NIR 

reflectances changed, the changes were rather monotonic with their values first increasing gradually 

and then decreasing (Figure 6a,b, top). MODIS NDVI changed very little and MODIS EVI remained 

the same (Figure 6c,d, top). ASTER vs. MODIS mean differences (AST07 minus MOD09) were also 

highly variable and did not show a strong systematic trend with respect to time (Figure 6). Red 

reflectance differences had the largest variability, ranging from .02 to .08 (Figure 6a, bottom). Overall, 

differences between ASTER and MODIS products can not be considered temporal-dependent. 

Figure 6. Temporal variability in ASTER (AST07) and MODIS (MOD09) radiometric 
variables and their differences: (a) red reflectance, (b) NIR reflectance, (c) NDVI, and 
(d) EVI2 (ASTER) and EVI (MODIS). The bars in the figure correspond to the standard 
deviation estimates. The sample size was 134 for every scene pair.  
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4.2. Accuracy Assessment 

In Figure 7, reflectances and VIs from the ASTER standard atmospherically-corrected product 

(AST07) are compared against those that were atmospherically-corrected with in situ Aeronet data 

(“in-house”). As described in the materials and methods section, we also analyzed green reflectance 

since the spectral band is located at a shorter wavelength region (see Figure 1) and thus likely more 

sensitive to quality of atmospheric correction. AST07 reflectance and VI values were basically larger 

than in-house atmospheric correction results. For the reflectances, discrepancies were the largest for 

green reflectance followed by NIR and red reflectances (Figure 7a,b,c). AST07 and in-house red 
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reflectances were nearly the same at the low values (0.0 – 0.1), but their differences and variations 

were larger at higher values (> 0.1) (Figure 7b). Both the NDVI and EVI2 from AST07 were larger 

than the in-house counterparts, but they were about the same values at the lower ranges (0.0 – 0.25) 

(Figure 7d,e).  

Figure 7. Scatterplots of AST07 vs. atmospherically-corrected ASTER data using in 
situ Aeronet data for (a) green, (b) red, and (c) NIR reflectances, and (d) NDVI and (e) 
EVI2. These “in-house” atmospheric corrections of ASTER data were performed by 
setting aerosol optical thickness to zero, simulating the actual ASTER atmospheric 
correction scenario.  
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Noticeable deviations from the 1:1 line occurred in the scatterplots, which was particularly clear in 

the reflectance scatterplots and the most significant in green reflectance (Figure 7). In these plots, one 

can see several lines (relationships) being formed, each of which was basically from one scene. This 

indicates that the performance of the ASTER atmospheric correction is variable and inconsistent 

among scenes. These differences were likely induced by the differences in the atmospheric radiative 

transfer (RT) codes. Further investigations will be needed to assess the impacts of RT model and 

ancillary data on accuracy of retrieved surface reflectance.  

In Figure 8, in-house atmospheric correction results with and without aerosol corrections are 

compared. All three reflectances and two VIs from these two correction results (aerosol vs. no aerosol 

corrections) were extremely comparable, forming near 1:1 relationships with very little scatter (Figure 

8). There were several points that slightly deviated from the 1:1 lines for the red and NIR reflectances 

(Figure 8b,c). These points were, however, from the July 2 Sevilleta scene of which AOT was 
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significantly higher (0.48) than those of the other scenes (see Table 3). Not correcting for aerosols 

should have some impacts on the accuracy of AST07 reflectance and VI products; however, the 

magnitude of differences and variations observed in Figure 7 were not due to aerosols based on the 

present results.  

Figure 8. Scatterplots of atmospherically-corrected ASTER data using in situ Aeronet 
data: no aerosol correction vs. aerosol correction.  
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MOD09 reflectances and VIs are plotted against in-house, atmospherically-corrected MODIS data 

using in situ Aeronet data in Figure 9. These MOD09 and in-house values compared with each other 

very well, scattering about 1:1 lines only with small variations (without any among-scene variability). 

This indicates that MOD09 atmospherically-corrected reflectances and VIs can be considered 

consistent and accurate.  

We summarized these differences into mean differences (MDs) (Figure 10). AST07 reflectances and 

VIs were consistently and significantly higher than those derived using in situ Aeronet data (Figure 

10a). MDs were largest for the green and NIR reflectances, whereas it was smallest for red reflectance. 

Comparisons of these MDs against those due to aerosols clearly indicated that aerosols were not the 

main factor for causing these large errors in AST07 reflectances and VIs (Figure 10c). On the other 

hand, the MDs between MOD09 and in-house atmospherically-corrected reflectance/VIs were smaller 

than those for AST07 vs. its in-house counterparts (Figure 10b). The MD for EVI was slightly larger 

than all the other radiometric variables, yet smaller than -0.01 (Figure 10b).  
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Figure 9. Scatterplots of MOD09 vs. atmospherically-corrected MODIS data using in 
situ Aeronet data for (a) green, (b) red, and (c) NIR reflectances, and (d) NDVI and (e) 
EVI.  
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Figure 10. Comparisons of mean differences between official and in-house products: (a) 
AST07 vs. in-house ASTER, (b) MOD09 vs. in-house MODIS, and (c) ASTER no 
aerosol vs. aerosol corrections. The error bars in the figure correspond to 99% 
confidence intervals. The sample size was 140.  
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5. Summary and Conclusions 

In this study, we investigated product inter-compatibility between ASTER and MODIS 

atmospherically-corrected reflectance products (AST07 and MOD09, respectively) and VIs computed 

from these standard reflectance products. Our analyses showed that surface reflectances and VIs from 

the two sensors compared well at a global scale. However, they were subject to systematic differences; 

ASTER reflectance values were higher than those of MODIS and ASTER NDVI values were lower 

than the MODIS counterparts, whereas ASTER EVI2 values were only slightly higher than MODIS 

EVI values. Our results also showed that reflectance and VI relationships between AST07 and MOD09 

and the magnitude of their systematic differences varied among scene pairs. When a single pair of 

AST07 and MOD09 scenes were compared, their reflectances and VIs formed good relationships. On 

the other hand, when multiple pairs were compared together, the slopes and curvelinearity of 

relationships varied from scene to scene. This inconsistency among scene pairs did not show strong 

geographic, land cover, or temporal dependencies. Thus, these results indicate that, when ASTER and 

MODIS reflectance products or VIs are to be cross-calibrated, it needs to be performed on a per-scene-

pair (local scale) basis for precise and accurate cross-calibration results.  

The quality or accuracy assessment results of ASTER and MODIS standard products suggested that 

the performance of the ASTER atmospheric correction algorithm was not as good as that of MODIS, 

and that, overall, ASTER surface reflectances and VIs were overestimated based on the dataset and 

atmospheric radiative transfer code used in this accuracy assessment. However, the assessment results 

indicated that, although aerosol correction was not implemented in the ASTER atmospheric correction 

algorithm, this had a minimum impact on quality or accuracy of the derived ASTER surface 

reflectances and VIs.  

Further investigation is needed to identify potential sources of inconsistent atmospheric correction 

results associated with the ASTER algorithm. These include input atmospheric data sources and the 

nearest approach used in the LUT search. Accuracy assessments of both the ASTER and MODIS 

surface reflectance products should also be performed using other atmospheric radiative transfer codes.  
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